Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
EMBO J ; 43(13): 2661-2684, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38811851

RESUMO

The molecular mechanisms governing the response of hematopoietic stem cells (HSCs) to stress insults remain poorly defined. Here, we investigated effects of conditional knock-out or overexpression of Hmga2 (High mobility group AT-hook 2), a transcriptional activator of stem cell genes in fetal HSCs. While Hmga2 overexpression did not affect adult hematopoiesis under homeostasis, it accelerated HSC expansion in response to injection with 5-fluorouracil (5-FU) or in vitro treatment with TNF-α. In contrast, HSC and megakaryocyte progenitor cell numbers were decreased in Hmga2 KO animals. Transcription of inflammatory genes was repressed in Hmga2-overexpressing mice injected with 5-FU, and Hmga2 bound to distinct regions and chromatin accessibility was decreased in HSCs upon stress. Mechanistically, we found that casein kinase 2 (CK2) phosphorylates the Hmga2 acidic domain, promoting its access and binding to chromatin, transcription of anti-inflammatory target genes, and the expansion of HSCs under stress conditions. Notably, the identified stress-regulated Hmga2 gene signature is activated in hematopoietic stem progenitor cells of human myelodysplastic syndrome patients. In sum, these results reveal a TNF-α/CK2/phospho-Hmga2 axis controlling adult stress hematopoiesis.


Assuntos
Caseína Quinase II , Cromatina , Proteína HMGA2 , Células-Tronco Hematopoéticas , Camundongos Knockout , Proteína HMGA2/metabolismo , Proteína HMGA2/genética , Animais , Células-Tronco Hematopoéticas/metabolismo , Camundongos , Humanos , Caseína Quinase II/metabolismo , Caseína Quinase II/genética , Cromatina/metabolismo , Cromatina/genética , Fator de Necrose Tumoral alfa/metabolismo , Hematopoese , Estresse Fisiológico , Fluoruracila/farmacologia , Regeneração , Fosforilação , Síndromes Mielodisplásicas/patologia , Síndromes Mielodisplásicas/genética , Síndromes Mielodisplásicas/metabolismo , Camundongos Endogâmicos C57BL
2.
EMBO J ; 43(3): 339-361, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38238476

RESUMO

Hematopoietic stem cell (HSC) divisional fate and function are determined by cellular metabolism, yet the contribution of specific cellular organelles and metabolic pathways to blood maintenance and stress-induced responses in the bone marrow remains poorly understood. The outer mitochondrial membrane-localized E3 ubiquitin ligase MITOL/MARCHF5 (encoded by the Mitol gene) is known to regulate mitochondrial and endoplasmic reticulum (ER) interaction and to promote cell survival. Here, we investigated the functional involvement of MITOL in HSC maintenance by generating MX1-cre inducible Mitol knockout mice. MITOL deletion in the bone marrow resulted in HSC exhaustion and impairment of bone marrow reconstitution capability in vivo. Interestingly, MITOL loss did not induce major mitochondrial dysfunction in hematopoietic stem and progenitor cells. In contrast, MITOL deletion induced prolonged ER stress in HSCs, which triggered cellular apoptosis regulated by IRE1α. In line, dampening of ER stress signaling by IRE1α inihibitor KIRA6 partially rescued apoptosis of long-term-reconstituting HSC. In summary, our observations indicate that MITOL is a principal regulator of hematopoietic homeostasis and protects blood stem cells from cell death through its function in ER stress signaling.


Assuntos
Endorribonucleases , Proteínas Serina-Treonina Quinases , Animais , Camundongos , Apoptose , Células-Tronco Hematopoéticas/metabolismo , Proteínas Serina-Treonina Quinases/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
3.
EMBO J ; 41(8): e109463, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35229328

RESUMO

In order to support bone marrow regeneration after myeloablation, hematopoietic stem cells (HSCs) actively divide to provide both stem and progenitor cells. However, the mechanisms regulating HSC function and cell fate choice during hematopoietic recovery remain unclear. We herein provide novel insights into HSC regulation during regeneration by focusing on mitochondrial metabolism and ATP citrate lyase (ACLY). After 5-fluorouracil-induced myeloablation, HSCs highly expressing endothelial protein C receptor (EPCRhigh ) were enriched within the stem cell fraction at the expense of more proliferative EPCRLow HSCs. These EPCRHigh HSCs were initially more primitive than EPCRLow HSCs and enabled stem cell expansion by enhancing histone acetylation, due to increased activity of ACLY in the early phase of hematopoietic regeneration. In the late phase of recovery, HSCs enhanced differentiation potential by increasing the accessibility of cis-regulatory elements in progenitor cell-related genes, such as CD48. In conditions of reduced mitochondrial metabolism and ACLY activity, these HSCs maintained stem cell phenotypes, while ACLY-dependent histone acetylation promoted differentiation into CD48+ progenitor cells. Collectively, these results indicate that the dynamic control of ACLY-dependent metabolism and epigenetic alterations is essential for HSC regulation during hematopoietic regeneration.


Assuntos
ATP Citrato (pro-S)-Liase , Medula Óssea , ATP Citrato (pro-S)-Liase/genética , ATP Citrato (pro-S)-Liase/metabolismo , Receptor de Proteína C Endotelial/metabolismo , Células-Tronco Hematopoéticas/fisiologia , Histonas/metabolismo
4.
Gastric Cancer ; 25(3): 542-557, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35166958

RESUMO

BACKGROUND: Signet ring cell carcinoma (SRCC) is a particular histologic variant of gastric cancer (GC). However, the critical factor related to the aggressive characteristics of SRCC has not been determined. METHODS: We collected surgically resected tissues from 360 GC patients in the Kumamoto University cohort and generated survival curves via the Kaplan-Meier method. In vitro, we identified the specific transcript variant of MUC20 in SRCC cells by direct sequencing and investigated the role of MUC20 in GC progression using GC cells with MUC20 silencing and forced expression. In vivo, we examined chemoresistance using MUC20 variant 2 (MUC20v2)-overexpressing non-SRCC cells to construct a xenograft mouse model. RESULTS: We analyzed a comprehensive GC cell line database to identify the specifically expressed genes in gastric SRCC. We focused on MUC20 and investigated its role in GC progression. Survival analysis revealed that GC patients with high MUC20 expression exhibited a poor prognosis and that MUC20 expression was significantly correlated with SRCC histological type. Moreover, we found that gastric SRCC cells specifically expressed MUC20v2, which was dominantly expressed in the cytoplasm. Silencing MUC20v2 caused cell death with characteristic morphological changes in gastric SRCC cells. To further determine the types of cell death, we examined apoptosis, pyroptosis and ferroptosis by detecting cleaved PARP, gasdermin E-N-terminal (GSDME-N), and lipid reactive oxygen species (ROS) levels, respectively. We found that apoptosis and pyroptosis occurred in MUC20-silenced gastric SRCC cells. In addition, MUC20v2-overexpressing GC cells exhibited chemoresistance to cisplatin (CDDP) and paclitaxel (PTX). RNA sequencing revealed that the pathways involved in intracellular calcium regulation were significantly upregulated in MUC20v2-overexpressing GC cells. Notably, forced expression of MUC20v2 in the cytoplasm of GC cells led to the maintenance of mitochondrial calcium homeostasis and mitochondrial membrane potential (MMP), which promoted cell survival and chemoresistance by suppressing apoptosis and pyroptosis. Finally, we investigated the significance of MUC20v2 in a xenograft model treated with CDDP and showed that MUC20v2 overexpression caused chemoresistance by inhibiting cell death. CONCLUSION: These findings highlight the novel functions of MUC20v2, which may confer cell survival and drug resistance in GC cells. SIGNIFICANCE: MUC20v2 protects GC cells from apoptosis and pyroptosis by maintaining mitochondrial calcium levels and mitochondrial membrane potential and subsequently induces drug resistance.


Assuntos
Carcinoma de Células em Anel de Sinete , Neoplasias Gástricas , Animais , Cálcio/uso terapêutico , Carcinoma de Células em Anel de Sinete/patologia , Cisplatino , Resistência a Medicamentos , Xenoenxertos , Homeostase , Humanos , Camundongos , Mucinas , Neoplasias Gástricas/tratamento farmacológico , Neoplasias Gástricas/genética , Neoplasias Gástricas/metabolismo
5.
EMBO J ; 36(16): 2390-2403, 2017 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-28673932

RESUMO

Hematopoietic homeostasis depends on the maintenance of hematopoietic stem cells (HSCs), which are regulated within a specialized bone marrow (BM) niche. When HSC sense external stimuli, their adhesion status may be critical for determining HSC cell fate. The cell surface molecule, integrin αvß3, is activated through HSC adhesion to extracellular matrix and niche cells. Integrin ß3 signaling maintains HSCs within the niche. Here, we showed the synergistic negative regulation of the pro-inflammatory cytokine interferon-γ (IFNγ) and ß3 integrin signaling in murine HSC function by a novel definitive phenotyping of HSCs. Integrin αvß3 suppressed HSC function in the presence of IFNγ and impaired integrin ß3 signaling mitigated IFNγ-dependent negative action on HSCs. During IFNγ stimulation, integrin ß3 signaling enhanced STAT1-mediated gene expression via serine phosphorylation. These findings show that integrin ß3 signaling intensifies the suppressive effect of IFNγ on HSCs, which indicates that cell adhesion via integrin αvß3 within the BM niche acts as a context-dependent signal modulator to regulate the HSC function under both steady-state and inflammatory conditions.


Assuntos
Proliferação de Células , Células-Tronco Hematopoéticas/fisiologia , Integrina alfaVbeta3/metabolismo , Interferon gama/metabolismo , Animais , Regulação da Expressão Gênica , Camundongos , Fosforilação , Processamento de Proteína Pós-Traducional , Fator de Transcrição STAT1/metabolismo , Transdução de Sinais
6.
Biochem Biophys Res Commun ; 473(3): 704-9, 2016 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-26546824

RESUMO

Corneal epithelial stem cells reside in the limbus, a transitional zone between the cornea and conjunctiva, and are essential for maintaining homeostasis in the corneal epithelium. Although our previous studies demonstrated that rabbit limbal epithelial side population (SP) cells exhibit stem cell-like phenotypes with Hoechst 33342 staining, the different characteristics and/or populations of these cells remain unclear. Therefore, in this study, we determined the gene expression profiles of limbal epithelial SP cells by RNA sequencing using not only present public databases but also contigs that were created by de novo transcriptome assembly as references for mapping. Our transcriptome data indicated that limbal epithelial SP cells exhibited a stem cell-like phenotype compared with non-SP cells. Importantly, gene ontology analysis following RNA sequencing demonstrated that limbal epithelial SP cells exhibited significantly enhanced expression of mesenchymal/endothelial cell markers rather than epithelial cell markers. Furthermore, single-cell quantitative real-time reverse transcription polymerase chain reaction (qRT-PCR) demonstrated that the limbal epithelial SP population consisted of at least two immature cell populations with endothelial- or mesenchymal-like phenotypes. Therefore, our present results may propose the presence of a novel population of corneal epithelial stem cells distinct from conventional epithelial stem cells.


Assuntos
Células Epiteliais/citologia , Epitélio Corneano/citologia , Análise de Sequência de RNA , Células da Side Population/citologia , Células-Tronco/citologia , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Benzimidazóis/química , Linhagem da Célula , Separação Celular , Mapeamento de Sequências Contíguas , Células Endoteliais/citologia , Citometria de Fluxo , Sequenciamento de Nucleotídeos em Larga Escala , Masculino , Células-Tronco Mesenquimais/citologia , Fenótipo , Coelhos , Reação em Cadeia da Polimerase em Tempo Real , Reação em Cadeia da Polimerase Via Transcriptase Reversa
7.
Stem Cells ; 33(7): 2196-207, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25753067

RESUMO

Recent identification of platelet/megakaryocyte-biased hematopoietic stem/repopulating cells requires revision of the intermediate pathway for megakaryopoiesis. Here, we show a unipotent megakaryopoietic pathway bypassing the bipotent megakaryocyte/erythroid progenitors (biEMPs). Cells purified from mouse bone marrow by CD42b (GPIbα) marking were demonstrated to be unipotent megakaryocytic progenitors (MKPs) by culture and transplantation. A subpopulation of freshly isolated CD41(+) cells in the lineage Sca1(+) cKit(+) (LSK) fraction (subCD41(+) LSK) differentiated only into MKP and mature megakaryocytes in culture. Although CD41(+) LSK cells as a whole were capable of differentiating into all myeloid and lymphoid cells in vivo, they produced unipotent MKP, mature megakaryocytes, and platelets in vitro and in vivo much more efficiently than Flt3(+) CD41(-) LSK cells, especially at the early phase after transplantation. In single cell polymerase chain reaction and thrombopoietin (TPO) signaling analyses, the MKP and a fraction of CD41(+) LSK, but not the biEMP, showed the similarities in mRNA expression profile and visible TPO-mediated phosphorylation. On increased demand of platelet production after 5-FU treatment, a part of CD41(+) LSK population expressed CD42b on the surface, and 90% of them showed unipotent megakaryopoietic capacity in single cell culture and predominantly produced platelets in vivo at the early phase after transplantation. These results suggest that the CD41(+) CD42b(+) LSK are straightforward progenies of megakaryocytes/platelet-biased stem/repopulating cells, but not progenies of biEMP. Consequently, we show a unipotent/highly biased megakaryopoietic pathway interconnecting stem/repopulating cells and mature megakaryocytes, the one that may play physiologic roles especially in emergency megakaryopoiesis.


Assuntos
Células-Tronco Hematopoéticas/metabolismo , Megacariócitos/metabolismo , Animais , Diferenciação Celular , Expressão Gênica , Células-Tronco Hematopoéticas/citologia , Megacariócitos/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
8.
Small ; 11(6): 681-7, 2015 Feb 11.
Artigo em Inglês | MEDLINE | ID: mdl-25238273

RESUMO

A stripe-patterned thermo-responsive surface is prepared to enable cell separation without labeling. The thermo-responsive surface containing a 3 µm striped pattern exhibits various cell adhesion and detachment properties. A mixture of three cell types is separated on the patterned surface based on their distinct cell-adhesion properties, and the composition of the cells is analyzed by flow cytometry.


Assuntos
Técnicas de Cultura de Células/instrumentação , Separação Celular/instrumentação , Temperatura , Alicerces Teciduais/química , Resinas Acrílicas/síntese química , Resinas Acrílicas/química , Animais , Técnicas de Cultura de Células/métodos , Separação Celular/métodos , Células Cultivadas , Materiais Revestidos Biocompatíveis/química , Células HeLa , Células Endoteliais da Veia Umbilical Humana , Humanos , Teste de Materiais , Camundongos , Células NIH 3T3 , Coloração e Rotulagem/instrumentação , Coloração e Rotulagem/métodos , Propriedades de Superfície , Engenharia Tecidual/instrumentação , Engenharia Tecidual/métodos
9.
Blood ; 119(1): 83-94, 2012 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-22096247

RESUMO

Throughout life, one's blood supply depends on sustained division of hematopoietic stem cells (HSCs) for self-renewal and differentiation. Within the bone marrow microenvironment, an adhesion-dependent or -independent niche system regulates HSC function. Here we show that a novel adhesion-dependent mechanism via integrin-ß3 signaling contributes to HSC maintenance. Specific ligation of ß3-integrin on HSCs using an antibody or extracellular matrix protein prevented loss of long-term repopulating (LTR) activity during ex vivo culture. The actions required activation of αvß3-integrin "inside-out" signaling, which is dependent on thrombopoietin (TPO), an essential cytokine for activation of dormant HSCs. Subsequent "outside-in" signaling via phosphorylation of Tyr747 in the ß3-subunit cytoplasmic domain was indispensable for TPO-dependent, but not stem cell factor-dependent, LTR activity in HSCs in vivo. This was accompanied with enhanced expression of Vps72, Mll1, and Runx1, 3 factors known to be critical for maintaining HSC activity. Thus, our findings demonstrate a mechanistic link between ß3-integrin and TPO in HSCs, which may contribute to maintenance of LTR activity in vivo as well as during ex vivo culture.


Assuntos
Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/efeitos dos fármacos , Integrina alfaVbeta3/fisiologia , Transdução de Sinais , Trombopoetina/farmacologia , Animais , Linfócitos B/imunologia , Linfócitos B/metabolismo , Biomarcadores/metabolismo , Western Blotting , Medula Óssea/efeitos dos fármacos , Medula Óssea/metabolismo , Comunicação Celular/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Feminino , Citometria de Fluxo , Perfilação da Expressão Gênica , Células-Tronco Hematopoéticas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Análise de Sequência com Séries de Oligonucleotídeos
10.
Exp Hematol ; : 104281, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39009278

RESUMO

Under stress hematopoiesis, previous studies have suggested the migration of hematopoietic stem cells (HSCs) from bone marrow (BM) to extramedullary sites such as the spleen. However, there is little direct evidence of HSC migration from the BM to the spleen. Here, we induced myeloablation via 5-fluorouracil (5-FU) and showed direct evidence of HSC migration from BM to spleen during hematopoietic regeneration via a photoconvertible fluorophore. Moreover, during steady state, HSCs preferentially migrated to BM rather than spleen, but during hematopoietic regeneration, HSCs preferred to spleen as a migration site equivalently or greater. Furthermore, in the early phase, HSCs egressed from BM through the attenuated HSC retention. However, HSCs in the late phase gained significantly enhanced cell-autonomous motility, which was independent of chemotaxis. Collectively, HSC mobilization from BM before the migration to the spleen was dynamically changed from passive to active events during hematopoietic regeneration.

11.
Exp Hematol ; 129: 104124, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37898316

RESUMO

Erythroid terminal differentiation and maturation depend on an enormous energy supply. During periods of fasting, ketone bodies from the liver are transported into circulation and utilized as crucial fuel for peripheral tissues. However, the effects of fasting or ketogenesis on erythroid behavior remain unknown. Here, we generated a mouse model with insufficient ketogenesis by conditionally knocking out the gene encoding the hepatocyte-specific ketogenic enzyme hydroxymethylglutary-CoA synthase 2 (Hmgcs2 KO). Intriguingly, erythroid maturation was enhanced with boosted fatty acid synthesis in the bone marrow of a hepatic Hmgcs2 KO mouse under fasting conditions, suggesting that systemic ketogenesis has a profound effect on erythropoiesis. Moreover, we observed significantly activated fatty acid synthesis and mevalonate pathways along with reduced histone acetylation in immature erythrocytes under a less systemic ketogenesis condition. Our findings revealed a new insight into erythroid differentiation, in which metabolic homeostasis and histone acetylation mediated by ketone bodies are essential factors in adaptation toward nutrient deprivation and stressed erythropoiesis.


Assuntos
Histonas , Hidroximetilglutaril-CoA Sintase , Camundongos , Animais , Histonas/metabolismo , Hidroximetilglutaril-CoA Sintase/genética , Hidroximetilglutaril-CoA Sintase/metabolismo , Corpos Cetônicos/genética , Corpos Cetônicos/metabolismo , Fígado/metabolismo , Jejum/fisiologia , Ácidos Graxos/metabolismo
12.
J Cell Biochem ; 114(9): 2138-47, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23553959

RESUMO

Rodent incisors grow throughout the animal's lives, and the tooth-forming cells are provided from proximal ends of the incisors where the tooth epithelium forms a stem cell niche called cervical loop. The committing cells in a cervical loop actively begin to proliferate (pre-ameloblasts), and differentiating into ameloblasts. This study showed that the lower incisors of mice null for CD61 (CD61(-/-) ), also known as integrin ß3, were significantly shorter than those of the wild-type mice at 8-week-old. The protein and mRNA expressions levels of Fgfr2, Lgr5, and Notch1, which are known to be involved in pre-ameloblastic cell proliferation and stem cell maintenance, were reduced in the cervical loop of 2-week-old CD61(-/-) mice. The proliferation of pre-ameloblasts was reduced in CD61(-/-) ameloblasts. The siRNA-mediated suppression of CD61 (siCD61) reduced the proliferation of pre-ameloblastic cell line ALC, and the expression levels of Lgr5 and Notch1 were reduced by the transfection with siCD61. The suppression of Lgr5 by transfection with siLgr5 suppressed the proliferation of the ALC cells. These results suggested that CD61 signaling is required for the proper growth of the cervical loop and for the promotion of the proliferation of pre-ameloblastic cells through Lgr5.


Assuntos
Ameloblastos/citologia , Ameloblastos/metabolismo , Integrina beta3/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Animais , Western Blotting , Proliferação de Células , Imuno-Histoquímica , Incisivo/crescimento & desenvolvimento , Incisivo/metabolismo , Integrina beta3/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Odontogênese/genética , Odontogênese/fisiologia , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/metabolismo , Receptor Notch1/genética , Receptor Notch1/metabolismo , Receptores Acoplados a Proteínas G/genética , Tomografia Computadorizada por Raios X
13.
JHEP Rep ; 5(12): 100892, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37942226

RESUMO

Background & Aims: Hepatocellular carcinoma (HCC) mainly develops from chronic hepatitis. Metabolic dysfunction-associated steatohepatitis (MASH) has gradually become the main pathogenic factor for HCC given the rising incidence of obesity and metabolic diseases. 15-Hydroxyprostaglandin dehydrogenase (15-PGDH) degrades prostaglandin 2 (PGE2), which is known to exacerbate inflammatory responses. However, the role of PGE2 accumulation caused by 15-PGDH downregulation in the development of MASH-HCC has not been determined. Methods: We utilised the steric animal model to establish a MASH-HCC model using wild-type and 15-Pgdh+/- mice to assess the significance of PGE2 accumulation in the development of MASH-HCC. Additionally, we analysed clinical samples obtained from patients with MASH-HCC. Results: PGE2 accumulation in the tumour microenvironment induced the production of reactive oxygen species in macrophages and the expression of cell growth-related genes and antiapoptotic genes. Conversely, the downregulation of fatty acid metabolism in the background liver promoted lipid accumulation in the tumour microenvironment, causing a decrease in mitochondrial membrane potential and CD8+ T-cell exhaustion, which led to enhanced development of MASH-HCC. Conclusions: 15-PGDH downregulation inactivates immune surveillance by promoting the proliferation of exhausted effector T cells, which enhances hepatocyte survival and proliferation and leads to the development of MASH-HCC. Impact and implications: The suppression of PGE2-related inflammation and subsequent lipid accumulation leads to a reduction in the severity of MASH and inhibition of subsequent progression toward MASH-HCC.

14.
Cancer Res ; 83(5): 753-770, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36543251

RESUMO

Excess stroma and cancer-associated fibroblasts (CAF) enhance cancer progression and facilitate immune evasion. Insights into the mechanisms by which the stroma manipulates the immune microenvironment could help improve cancer treatment. Here, we aimed to elucidate potential approaches for stromal reprogramming and improved cancer immunotherapy. Platelet-derived growth factor C (PDGFC) and D expression were significantly associated with a poor prognosis in patients with gastric cancer, and PDGF receptor beta (PDGFRß) was predominantly expressed in diffuse-type gastric cancer stroma. CAFs stimulated with PDGFs exhibited markedly increased expression of CXCL1, CXCL3, CXCL5, and CXCL8, which are involved in polymorphonuclear myeloid-derived suppressor cell (PMN-MDSC) recruitment. Fibrotic gastric cancer xenograft tumors exhibited increased PMN-MDSC accumulation and decreased lymphocyte infiltration, as well as resistance to anti-PD-1. Single-cell RNA sequencing and spatial transcriptomics revealed that PDGFRα/ß blockade reversed the immunosuppressive microenvironment through stromal modification. Finally, combining PDGFRα/ß blockade and anti-PD-1 treatment synergistically suppressed the growth of fibrotic tumors. These findings highlight the impact of stromal reprogramming on immune reactivation and the potential for combined immunotherapy for patients with fibrotic cancer. SIGNIFICANCE: Stromal targeting with PDGFRα/ß dual blockade reverses the immunosuppressive microenvironment and enhances the efficacy of immune checkpoint inhibitors in fibrotic cancer. See related commentary by Tauriello, p. 655.


Assuntos
Receptor alfa de Fator de Crescimento Derivado de Plaquetas , Neoplasias Gástricas , Humanos , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Fibrose , Imunoterapia , Microambiente Tumoral
15.
Front Cell Dev Biol ; 10: 994588, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36478736

RESUMO

Tsukushi (TSK) proteoglycan dysfunction leads to hydrocephalus, a condition defined by excessive fluid collection in the ventricles and lateral ventricular enlargement. TSK injections into the LV at birth are effective at rescuing the lateral ventricle (LV). TSK regulates the activation of the Wnt signaling to facilitate the proper expansion of the LV and maintain the fate of the neural stem cell lineage. However, the molecular mechanism by which TSK acts on neural stem/progenitor cells (NSCs) during LV development is unknown. We demonstrated that TSK is crucial for the splicing and development-associated gene regulation of GFAP-expressing subventricular zone (SVZ) NSCs. We isolated GFAP-expressing NSCs from the SVZ of wild-type (GFAPGFP/+/TSK+/+) and TSK knock-out (GFAPGFP/+/TSK-/-) mice on postnatal day 3 and compared their transcriptome and splicing profiles. TSK deficiency in NSCs resulted in genome-wide missplicing (alteration in exon usage) and transcriptional dysregulation affecting the post-transcriptional regulatory processes (including splicing, cell cycle, and circadian rhythm) and developmental signaling networks specific to the cell (including Wnt, Sonic Hedgehog, and mTOR signaling). Furthermore, TSK deficiency prominently affected the splicing of genes encoding RNA and DNA binding proteins in the nervous SVZ and non-nervous muscle tissues. These results suggested that TSK is involved in the maintenance of correct splicing and gene regulation in GFAP-expressing NSCs, thereby protecting cell fate and LV development. Hence, our study provides a critical insight on hydrocephalus development.

16.
Commun Biol ; 5(1): 776, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35918480

RESUMO

Hematopoietic stem cells (HSCs) are produced from the blood vessel walls and circulate in the blood during the perinatal period. However, the migration dynamics of how HSCs enter the bone marrow remain elusive. To observe the dynamics of HSCs over time, the present study develops an intravital imaging method to visualize bone marrow in neonatal long bones formed by endochondral ossification which is essential for HSC niche formation. Endogenous HSCs are labeled with tdTomato under the control of an HSC marker gene Hlf, and a customized imaging system with a bone penetrating laser is developed for intravital imaging of tdTomato-labeled neonatal HSCs in undrilled tibia, which is essential to avoid bleeding from fragile neonatal tibia by bone drilling. The migration speed of neonatal HSCs is higher than that of adult HSCs. Neonatal HSCs migrate from outside to inside the tibia via the blood vessels that penetrate the bone, which is a transient structure during the neonatal period, and settle on the blood vessel wall in the bone marrow. The results obtained from direct observations in vivo reveal the motile dynamics and colonization process of neonatal HSCs during bone marrow formation.


Assuntos
Medula Óssea , Nicho de Células-Tronco , Osso e Ossos , Diagnóstico por Imagem , Células-Tronco Hematopoéticas , Humanos , Recém-Nascido
17.
Nat Commun ; 13(1): 271, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-35022428

RESUMO

Leukemia stem cells (LSCs) in chronic myeloid leukemia (CML) are quiescent, insensitive to BCR-ABL1 tyrosine kinase inhibitors (TKIs) and responsible for CML relapse. Therefore, eradicating quiescent CML LSCs is a major goal in CML therapy. Here, using a G0 marker (G0M), we narrow down CML LSCs as G0M- and CD27- double positive cells among the conventional CML LSCs. Whole transcriptome analysis reveals NF-κB activation via inflammatory signals in imatinib-insensitive quiescent CML LSCs. Blocking NF-κB signals by inhibitors of interleukin-1 receptor-associated kinase 1/4 (IRAK1/4 inhibitors) together with imatinib eliminates mouse and human CML LSCs. Intriguingly, IRAK1/4 inhibitors attenuate PD-L1 expression on CML LSCs, and blocking PD-L1 together with imatinib also effectively eliminates CML LSCs in the presence of T cell immunity. Thus, IRAK1/4 inhibitors can eliminate CML LSCs through inhibiting NF-κB activity and reducing PD-L1 expression. Collectively, the combination of TKIs and IRAK1/4 inhibitors is an attractive strategy to achieve a radical cure of CML.


Assuntos
Quinases Associadas a Receptores de Interleucina-1/efeitos dos fármacos , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mieloide/tratamento farmacológico , Células-Tronco Neoplásicas/metabolismo , Animais , Antineoplásicos/farmacologia , Doença Crônica , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Proteínas de Fusão bcr-abl/metabolismo , Humanos , Mesilato de Imatinib/farmacologia , Inibidores de Checkpoint Imunológico/farmacologia , Quinases Associadas a Receptores de Interleucina-1/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Masculino , Camundongos , Pessoa de Meia-Idade , Inibidores de Proteínas Quinases/farmacologia
18.
Blood Adv ; 5(6): 1594-1604, 2021 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-33710340

RESUMO

Hematopoietic stem cells (HSCs) undergo self-renewal or differentiation to sustain lifelong hematopoiesis. HSCs are preserved in quiescence with low mitochondrial activity. Recent studies indicate that autophagy contributes to HSC quiescence through suppressing mitochondrial metabolism. However, it remains unclear whether autophagy is involved in the regulation of neonatal HSCs, which proliferate actively. In this study, we clarified the role of autophagy in neonatal HSCs using 2 types of autophagy-related gene 7 (Atg7)-conditional knockout mice: Mx1-Cre inducible system and Vav-Cre system. Atg7-deficient HSCs exhibited excess cell divisions with enhanced mitochondrial metabolism, leading to bone marrow failure at adult stage. However, Atg7 deficiency minimally affected hematopoiesis and metabolic state in HSCs at neonatal stage. In addition, Atg7-deficient neonatal HSCs exhibited long-term reconstructing activity, equivalent to wild-type neonatal HSCs. Taken together, autophagy is dispensable for stem cell function and hematopoietic homeostasis in neonates and provide a novel aspect into the role of autophagy in the HSC regulation.


Assuntos
Hematopoese , Células-Tronco Hematopoéticas , Animais , Autofagia , Transtornos da Insuficiência da Medula Óssea , Diferenciação Celular , Camundongos
19.
Nat Metab ; 3(2): 196-210, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33619377

RESUMO

Ketone bodies are generated in the liver and allow for the maintenance of systemic caloric and energy homeostasis during fasting and caloric restriction. It has previously been demonstrated that neonatal ketogenesis is activated independently of starvation. However, the role of ketogenesis during the perinatal period remains unclear. Here, we show that neonatal ketogenesis plays a protective role in mitochondrial function. We generated a mouse model of insufficient ketogenesis by disrupting the rate-limiting hydroxymethylglutaryl-CoA synthase 2 enzyme gene (Hmgcs2). Hmgcs2 knockout (KO) neonates develop microvesicular steatosis within a few days of birth. Electron microscopic analysis and metabolite profiling indicate a restricted energy production capacity and accumulation of acetyl-CoA in Hmgcs2 KO mice. Furthermore, acetylome analysis of Hmgcs2 KO cells revealed enhanced acetylation of mitochondrial proteins. These findings suggest that neonatal ketogenesis protects the energy-producing capacity of mitochondria by preventing the hyperacetylation of mitochondrial proteins.


Assuntos
Metabolismo Energético/fisiologia , Corpos Cetônicos/biossíntese , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Ácido 3-Hidroxibutírico/metabolismo , Acetilação , Animais , Animais Recém-Nascidos , Hidroximetilglutaril-CoA Sintase/genética , Hidroximetilglutaril-CoA Sintase/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Camundongos Knockout , Microvasos/fisiologia , Consumo de Oxigênio
20.
Front Immunol ; 11: 585367, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33329562

RESUMO

Lifelong blood production is maintained by bone marrow (BM)-residing hematopoietic stem cells (HSCs) that are defined by two special properties: multipotency and self-renewal. Since dysregulation of either may lead to a differentiation block or extensive proliferation causing dysplasia or neoplasia, the genomic integrity and cellular function of HSCs must be tightly controlled and preserved by cell-intrinsic programs and cell-extrinsic environmental factors of the BM. The BM had been long regarded an immune-privileged organ shielded from immune insults and inflammation, and was thereby assumed to provide HSCs and immune cells with a protective environment to ensure blood and immune homeostasis. Recently, accumulating evidence suggests that hemato-immune challenges such as autoimmunity, inflammation or infection elicit a broad spectrum of immunological reactions in the BM, and in turn, influence the function of HSCs and BM environmental cells. Moreover, in analogy with the emerging concept of "trained immunity", certain infection-associated stimuli are able to train HSCs and progenitors to produce mature immune cells with enhanced responsiveness to subsequent challenges, and in some cases, form an inflammatory or infectious memory in HSCs themselves. In this review, we will introduce recent findings on HSC and hematopoietic regulation upon exposure to various hemato-immune stimuli and discuss how these challenges can elicit either beneficial or detrimental outcomes on HSCs and the hemato-immune system, as well as their relevance to aging and hematologic malignancies.


Assuntos
Medula Óssea/imunologia , Microambiente Celular/imunologia , Células-Tronco Hematopoéticas/imunologia , Memória Imunológica/imunologia , Inflamação/imunologia , Envelhecimento/imunologia , Envelhecimento/patologia , Animais , Neoplasias Hematológicas/imunologia , Neoplasias Hematológicas/patologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA