RESUMO
OBJECTIVE: The purpose of this experiment was to compare the Sorin KIDS D131 and the Terumo Capiox AF02 pediatric arterial filters in a simulated CPB procedure to determine which filter is the better for clinical use. METHODS: The experimental circuit was primed with an 800 ml combination of lactated Ringer's solution and human blood (hematocrit (Hct) 30%). The two filters were tested under flow rates of 500, 1000, and 1500 ml/min at room temperature and their purge lines opened and closed as 5cc of air was injected into the circuit. RESULTS: As the flow rates increased, the number of gaseous microemboli (GME) being returned to the pseudo patient increased for both of the pediatric arterial filters. Having an open purge line increased the number of GME removed from the CPB circuit, caused less of a pressure drop than when closed and increased the total hemodynamic energy loss than when closed. Both of the filters performed and reacted similarly in decreasing GME, hemodynamic energy loss and pressure drop. The only minor difference was that the Capiox AF02 had slightly less stolen blood flow (109.5 ± 1.7 ml/min at 500 ml/min, 114.7 ± 1.1 ml/min at 1000 ml/min and 105.8 ± 4.2 ml/min at 1500ml/min) from the open purge line than the KIDS D131 (119.5 ± 2.5 ml/min at 500 ml/min, 128.3 ± 1.0 ml/min at 1000 ml/min and 126.3 ± 3.1 ml/min at 1500 ml/min). CONCLUSION: Our study confirmed that both the Sorin KIDS D131 and the Terumo Capiox AF02 were equivalent in their ability to remove significant numbers of GME, the amount of pressure drop and the total hemodynamic energy loss across the arterial filters at the various flow rates. An arterial filter is not an option, but a necessity for removing microemboli delivered to the patient.
Assuntos
Ponte Cardiopulmonar/instrumentação , Dispositivos de Proteção Embólica/efeitos adversos , Modelos Cardiovasculares , Velocidade do Fluxo Sanguíneo , Ponte Cardiopulmonar/métodos , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Recém-Nascido , Soluções Isotônicas/farmacologia , Masculino , Pressão , Solução de RingerRESUMO
Ultrafiltration, which is currently considered as a standard method to remove excess water administered during pediatric cardiopulmonary bypass (CPB), aims to minimize the adverse effects of hemodilution, such as tissue edema and blood transfusion. Three ultrafiltration techniques can be used before, during and after CPB procedures, including conventional ultrafiltration (CUF), modified ultrafiltration (MUF) and zero-balance ultrafiltration (Z-BUF). These methods are widely different, but they have common benefits on hemoconcentration, less requirement for blood products, and reduction of the systemic inflammatory responses (SIRS). The present review attempts to restate these ultrafiltration circuitries, application methods, end-points, and clinical impacts.
Assuntos
Ponte Cardiopulmonar/métodos , Hemofiltração/métodos , Pediatria/métodos , Transfusão de Sangue/métodos , Pré-Escolar , Hemodiluição/métodos , Humanos , Lactente , Recém-Nascido , Estudos Retrospectivos , Resultado do Tratamento , Ultrafiltração/métodosRESUMO
The cardiopulmonary bypass (CPB) procedure has been shown to be a possible cause of postoperative neurological morbidity for various reasons, including: large amounts of gaseous microemboli (GME) reaching the patient and hypoperfusion of the patient due to "stolen" blood flow. This study used a simulated CPB circuit identical to that in a clinical setting to examine three different hollow-fiber membrane oxygenators without intergrated arterial filters - the Capiox RX05, the Quadrox-i neonatal, and the KIDS D100 - to determine their ability to reduce the number of GME delivered to the neonatal patient and their hemodynamic properties in response to varying flow rates, normothermic vs hypothermic conditions, and open vs closed purge line. The circuit was primed with Ringer's Lactate and then human blood with a hematocrit of 30%. Injections of 5cc bolusses of air were injected into the venous line proximal to the venous reservoir over a thirty-second interval. Six injections were done for each oxygenator at each of the eight different experimental conditions for a total of 64 experiments per oxygenator (192 total injections). A flow probe, pressure transducer, and Emboli Detection and Classification (EDAC) quantifier transducer were positioned both upstream and downstream of the oxygenator to measure differences in each parameter. Results demonstrated that the Capiox RX05 is the most effective oxygenator at reducing the number of microemboli that potentially can be delivered to the neonatal patient. In regards to the hemodynamic properties, the Quadrox-i has the most favorable results, with the lowest mean pressure drop and the best energy retention across the oxygenator.
Assuntos
Ponte Cardiopulmonar/instrumentação , Oxigenadores de Membrana , Embolia Aérea/diagnóstico , Embolia Aérea/etiologia , Desenho de Equipamento , Hemodinâmica , Humanos , Recém-Nascido , Oxigenadores de Membrana/efeitos adversos , PressãoRESUMO
Perfusion quality during cardiopulmonary bypass (CPB) procedures can contribute to postoperative neurological complications and influence patient recovery and outcome. Gaseous microemboli generated in the circuit and hemodynamic properties of blood reaching the patient can be monitored during CPB to optimize perfusion. Oxygenators that oxygenate the blood during CPB can significantly influence the quality of blood reaching the patient by their manufacturing designs. New hollow-fiber membrane oxygenators are developed with integrated arterial filters to reduce priming volume and eliminate a separate arterial filter in the circuit. To evaluate the performance of these new oxygenators, we used a simulated model to compare the Quadrox-i Neonatal and the Capiox Baby FX05 neonatal oxygenators and to provide a review of these oxygenators with their respective counterparts which have separate arterial filters. We found that microemboli counts for the new Quadrox-i and Capiox FX05 oxygenators are similar in the arterial line, but different across the oxygenator for all experimental conditions. The arterial purge line diverting blood from the patient reduces microemboli count for the Capiox FX05, but is inconsistent for the Quadrox-i Neonatal. While hemodynamic energy delivered to the patient is similar for both oxygenators, shunted blood flow for the Quadrox-i Neonatal oxygenator is three times higher than the Capiox FX05 (103.6 mL/min vs 33.0 mL/min at 400 mL/min and 35°C) (p<0.001).
Assuntos
Ponte Cardiopulmonar/instrumentação , Ponte Cardiopulmonar/métodos , Dispositivos de Proteção Embólica , Oxigenadores de Membrana , Velocidade do Fluxo Sanguíneo , Feminino , Humanos , Lactente , MasculinoRESUMO
This study compared four pediatric cardiopulmonary bypass (CPB) circuits with four different hollow-fiber membrane oxygenators and their specific reservoirs, Capiox RX15, Quadrox-i pediatric, Quadrox-i pediatric with integrated arterial filter (IAF) and KIDS D101, in a simulated CPB circuit identical to that used in the clinical setting at our institution to test their ability to maintain hemodynamic properties, remove gaseous microemboli (GME), and to test the amount of blood "stolen" by the arterial filter purge line. The circuit was first primed with Ringer's Lactate solution, then red blood cells were added and the hematocrit was maintained at 30%. A 5-cc bolus of air was injected just proximal to the venous reservoir over a thirty-second interval and GME were monitored using an Emboli Detection and Classification quantifier. Transducers were placed at pre-oxygenator, post-oxygenator and distal arterial line (post-filter) positions. Flow probes were also placed both pre and post filter. The injections were made at three flow rates, hypothermic and normothermic temperatures, and with the purge line in both the opened and closed positions. Six injections were done at each of the 12 experimental conditions. Results demonstrated that GME in the arterial line increased with increasing temperature and flow rate. The Capiox RX15 had the least GME in the arterial line at all experimental conditions. The KIDS D101 had the largest pressure drop and the lowest retention of hemodynamic energy, while the Capiox had the lowest pressure drop. All of the oxygenators had a similar amount of "stolen" blood flow and it was consistently under 10% of the total flow reaching the patient.
Assuntos
Ponte Cardiopulmonar/métodos , Embolia Aérea/diagnóstico , Pediatria/métodos , Ponte Cardiopulmonar/instrumentação , Ponte Cardiopulmonar/normas , Criança , Pré-Escolar , Embolia Aérea/fisiopatologia , Humanos , Oxigenadores de Membrana , Pediatria/instrumentação , Pediatria/normasRESUMO
OBJECTIVE: To construct an ideal extracorporeal life support (ECLS) circuit in terms of hemodynamic performance, each component of the circuit should be evaluated. Most cannulae manufacturers evaluate their products using water as the priming solution. We conducted this study to evaluate the different sizes of arterial and venous cannulae in a simulated neonatal ECLS circuit primed with human blood. METHODS: The simulated neonatal ECLS circuit was composed of a Capiox Baby RX05 oxygenator, a Rotaflow centrifugal pump and a heater & cooler unit. Three Medtronic Bio-Medicus arterial cannulae (8Fr, 10Fr, 12Fr) and three venous cannulae (10Fr, 12Fr, 14Fr) were tested in seven combinations (8A-10V, 8A-12V, 10A-10V, 10A-12V, 10A-14V, 12A-12V, 12A-14V). All the experiments were conducted using human blood at a hematocrit of 40% and at a constant temperature of 37°C. The "tip to tip" priming volume of the entire circuit was 135ml. The blood volume of the pseudo patient was 500ml. RESULTS: Flow rates increased linearly with increasing size in both venous and arterial cannulae at the same pump speeds. The increase in flow rate was greater when changing the arterial cannulae (next size larger) compared to changing the venous cannulae (next size larger). The pressure drops of the arterial cannula were correlated with the flow rates, regardless of the pseudo patient pressure and the venous cannula used simultaneously. CONCLUSIONS: The results show the difference in flow ranges and pressure drops of seven combinations of arterial and venous cannulae. It also suggests that the arterial cannula, not the venous cannula, has greater impact on the flow rate when a centrifugal pump is used in a neonatal ECLS circuit. The results of this study have been translated to further advancing the clinical practice in our institution.
Assuntos
Cateterismo/instrumentação , Catéteres , Circulação Extracorpórea/instrumentação , Hemodinâmica , Artérias , Cateterismo/métodos , Circulação Extracorpórea/métodos , Humanos , Recém-Nascido , VeiasRESUMO
This review on the benefits of pulsatile flow includes not only experimental and clinical data, but also attempts to further illuminate the major factors as to why this debate has continued during the past 55 years. Every single component of the cardiopulmonary bypass (CPB) circuitry is equally important for generating adequate quality of pulsatility, not only the pump. Therefore, translational research is a necessity to select the best components for the circuit. Generation of pulsatile flow depends on an energy gradient; precise quantification in terms of hemodynamic energy levels is, therefore, a necessity, not an option. Comparisons between perfusion modes should be done after these basic steps have been taken. We have also included experimental and clinical data for direct comparisons between the perfusion modes. In addition, we included several suggestions for future clinical trials for other interested investigators.
Assuntos
Ponte Cardiopulmonar/métodos , Hemodinâmica , Fluxo Pulsátil , Adolescente , Ponte Cardiopulmonar/efeitos adversos , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Pesquisa Translacional Biomédica/métodosRESUMO
OBJECTIVES: Patients undergoing cardiopulmonary bypass frequently manifest generalized systemic inflammation and occasionally manifest serious multiorgan failure. Inflammatory responses of bypass are triggered by contact of blood with artificial surfaces of the bypass circuits, surgical trauma, and ischemia-reperfusion injury. We studied the effects of specific inhibition of the alternative complement cascade by using an anti-factor D monoclonal antibody (166-32) in extracorporeal circulation of human whole blood used as a simulated model of cardiopulmonary bypass. METHODS: Five healthy blood donors were used in the study. Monoclonal antibody 166-32 was added to freshly collected, heparinized human blood recirculated in a pediatric cardiopulmonary bypass circuit at a final concentration of 18 microg/mL. An irrelevant monoclonal antibody was used as a negative control with the same donor blood in a parallel bypass circuit on the same day. Blood samples were collected at different time points during recirculation for measurement of activation of complement, neutrophils, and platelets by immunofluorocytometric methods and enzyme-linked immunosorbent assays. RESULTS: Monoclonal antibody 166-32 inhibited the alternative complement activation and the production of Bb, C3a, sC5b-9, and C5a. Upregulation of CD11b on neutrophils and CD62P on platelets was also significantly inhibited by monoclonal antibody 166-32. This is consistent with the inhibition of the release of neutrophil-specific myeloperoxidase and elastase and platelet thrombospondin. The production of proinflammatory cytokine interleukin 8 was also suppressed by the antibody. CONCLUSIONS: The alternative complement cascade is predominantly activated during extracorporeal circulation. Anti-factor D monoclonal antibody 166-32 is effective in inhibiting the activation of complement, neutrophils, and platelets. Inhibition of the alternative complement pathway by targeting factor D could be useful in reducing systemic inflammation in patients undergoing cardiopulmonary bypass.
Assuntos
Anticorpos Monoclonais/farmacologia , Ponte Cardiopulmonar , Ativação do Complemento/efeitos dos fármacos , Fator D do Complemento/antagonistas & inibidores , Via Alternativa do Complemento/fisiologia , Ativação de Neutrófilo/efeitos dos fármacos , Ativação Plaquetária/efeitos dos fármacos , Complemento C5a/metabolismo , Fator D do Complemento/imunologia , Ensaio de Atividade Hemolítica de Complemento , Via Alternativa do Complemento/efeitos dos fármacos , Humanos , Antígeno de Macrófago 1/metabolismoRESUMO
BACKGROUND: Organ injury (brain, kidney, and heart) has been reported in up to 30% of pediatric open heart surgery patients after conventional hypothermic non-pulsatile cardiopulmonary bypass (CPB) support with or without deep hypothermic circulatory arrest (DHCA). The effects of pulsatile (with a Food and Drug Administration approved modified roller pump) versus non-pulsatile perfusion on regional and global cerebral, renal, and myocardial blood flow were investigated during and after CPB with 60 minutes of DHCA in a neonatal piglet model. METHODS: Piglets, mean weight 3 kg, were used in both pulsatile (n = 7) and non-pulsatile (n = 7) groups. After initiation of CPB, all animals were subjected to hypothermia for 25 minutes, reducing the rectal temperatures to 18 degrees C, 60 minutes of DHCA followed by 10 minutes of cold reperfusion and 40 minutes of rewarming with a pump flow of 150 mL/kg/min. During cooling and rewarming, alpha-stat acid-base management was used. Differently labeled radioactive microspheres were injected pre-CPB, on normothermic CPB, pre-DHCA, post-DHCA, and after CPB to measure the regional and global cerebral, renal, and myocardial blood flows. RESULTS: Global cerebral blood flow was significantly higher in the pulsatile group compared to the non-pulsatile group at normothermic CPB (100.4 +/- 6.3 mL/100 gm/min versus 70.2 +/- 8.1 mL/100 gm/min, p < 0.05) and pre-DHCA (77.2 +/- 5.2 mL/100 gm/min versus 56.1 +/- 6.7 mL/100 gm/min, p < 0.05). Blood flow in cerebellum, basal ganglia, brain stem, and right and left cerebral hemispheres had an identical pattern with the global cerebral blood flow. Renal blood flow appeared higher in the pulsatile group compared to the non-pulsatile group during CPB, but the results were statistically significant only at post-CPB (94.8 +/- 9 mL/100 gm/min versus 22.5 +/- 22 mL/100 gm/min, p < 0.05). Pulsatile flow better maintained the myocardial blood flow compared to the non-pulsatile flow after CPB (316.6 +/- 45.5 mL/100 gm/min versus 188.2 +/- 19.5 mL/100 gm/min, p < 0.05). CONCLUSIONS: Pulsatile perfusion provides superior vital organ blood flow compared to non-pulsatile perfusion in this model.
Assuntos
Isquemia Encefálica/etiologia , Ponte Cardiopulmonar , Parada Cardíaca Induzida , Isquemia/etiologia , Rim/irrigação sanguínea , Isquemia Miocárdica/etiologia , Animais , Animais Recém-Nascidos , Velocidade do Fluxo Sanguíneo/fisiologia , Isquemia Encefálica/fisiopatologia , Criança , Hemodinâmica/fisiologia , Humanos , Hipotermia Induzida , Lactente , Isquemia/fisiopatologia , Isquemia Miocárdica/fisiopatologia , Fluxo Pulsátil/fisiologia , Fluxo Sanguíneo Regional/fisiologia , Fatores de Risco , SuínosRESUMO
BACKGROUND: Pulsatile perfusion systems have been proposed as a means of improving end-organ perfusion during and after cardiopulmonary bypass. Few attempts have been made to study this issue in an infant model. METHODS: Neonatal piglets were subjected to nonpulsatile (n = 6) or pulsatile (n = 7) cardiopulmonary bypass and 60 minutes of circulatory arrest. Cerebral, renal, and myocardial blood flow measurements were obtained at baseline, on bypass before and after circulatory arrest, and after bypass. RESULTS: Cerebral blood flow did not differ between groups at any time and was diminished equally in both groups after circulatory arrest. Renal blood flow was diminished in both groups during bypass but was significantly better in the pulsatile group than in the nonpulsatile group prior to, but not after, circulatory arrest. Myocardial blood flow was maintained at or above baseline in the pulsatile group throughout the study, but in the nonpulsatile group, it was significantly lower than baseline during CPB prior to circulatory arrest and lower compared with baseline and with the pulsatile group 60 minutes after CPB. CONCLUSIONS: Pulsatile bypass does not improve recovery of cerebral blood flow after circulatory arrest, may improve renal perfusion during bypass but does not improve its recovery after ischemia, and may have beneficial effects on myocardial blood flow during bypass and after ischemia compared with nonpulsatile bypass in this infant model.
Assuntos
Encéfalo/irrigação sanguínea , Ponte Cardiopulmonar/métodos , Vasos Coronários/fisiologia , Parada Cardíaca Induzida , Rim/irrigação sanguínea , Fluxo Pulsátil , Animais , Animais Recém-Nascidos , Modelos Animais de Doenças , Isquemia/fisiopatologia , Fluxo Sanguíneo Regional , SuínosRESUMO
Impairment of cerebral oxygenation in neonates and infants after hypothermic nonpulsatile cardiopulmonary bypass (CPB) support is well documented. The objectives of this study were: 1) using a neonatal piglet model to continuously monitor the regional cerebral oxygen saturation (rSO2) by near-infrared spectroscopy during pulsatile hypothermic CPB; and 2) to quantify the pulsatile flow in terms of energy equivalent pressure (EEP). After initiation of CPB, all piglets (n = 5) were subjected to 15 minutes of core cooling, reducing the rectal temperature to 25 degrees C, followed by 60 minutes of hypothermic CPB, then 10 minutes of cold reperfusion, and 30 minutes of rewarming. During CPB, mean arterial pressures (MAPs) and pump flow rates were maintained at 40-45 mm Hg and 150 ml/kg/min, respectively. During normothermic CPB, the rSO2 was significantly increased, compared with the pre-CPB level (56.8 +/- 5.2% vs. 41.8 +/- 5.5%, p < 0.01). At the end of cooling, the rSO2 level was 76.8 +/- 8.6% (p < 0.001 vs. pre-CPB). After 60 minutes of hypothermic CPB and 30 minutes of rewarming, the rSO2 level was decreased to 38.6 +/- 4.2%, which was not significantly different compared with the pre-CPB level. The average increase in pressure (from MAP to EEP) was 5 +/- 1%, and the average increase in extracorporeal circuit pressure (from ECCP to EEP) was 13 +/- 2%. This extra pressure may help to provide better regional cerebral oxygen saturation. During pulsatile CPB, there was no rSO2 deficiency in this high flow model. Near-infrared spectroscopy responded well to changes in rSO2 during different stages of these experiments and might be a helpful tool for intraoperative monitoring.
Assuntos
Encéfalo/metabolismo , Ponte Cardiopulmonar , Monitorização Intraoperatória , Oxigênio/metabolismo , Animais , Animais Recém-Nascidos , Pressão Sanguínea , Parada Cardíaca Induzida , Espectroscopia de Luz Próxima ao Infravermelho , SuínosRESUMO
The purpose of this study was to quantify and compare pulsatile and nonpulsatile pressure and flow waveforms in terms of energy equivalent pressure (EEP) during cardiopulmonary bypass in a neonatal piglet model. EEP is the ratio of the area under the hemodynamic power curve and the flow curve. Piglets, mean weight of 3 kg, were used in physiologic pulsatile pump (n = 7), pulsatile roller pump (n = 6), and nonpulsatile roller pump (n = 7) groups. Data (waveforms of the femoral artery pressure, pump flow, and preaortic cannula extracorporeal circuit pressure) were collected during normothermic cardiopulmonary bypass at 35 degrees C (15 minutes on-pump), before deep hypothermic circulatory arrest (pre-DHCA) at 18 degrees C, and after cold reperfusion and rewarming (post-DHCA) at 36 degrees C. The pump flow rate was 150 ml/kg/min in all three groups. During pulsatile perfusion, the pump rate was 150 bpm in both pulsatile groups. Although there was no difference in mean pressures in all groups, EEP and the percentage increase of pressure (from mean pressure to EEP) of mean arterial pressure and preaortic cannula extracorporeal circuit pressure were higher with pulsatile perfusion compared with nonpulsatile perfusion (p < 0.001). In particular, the physiologic pulsatile pump group produced significantly higher hemodynamic energy compared with the other groups (p < 0.001). These results suggest that pulsatile and nonpulsatile flows can be quantified in terms of EEP for direct comparisons, and pulsatile flow generates higher energy, which may be beneficial for vital organ perfusion during cardiopulmonary bypass.
Assuntos
Pressão Sanguínea/fisiologia , Ponte Cardiopulmonar , Metabolismo Energético/fisiologia , Fluxo Pulsátil/fisiologia , Animais , Modelos Animais de Doenças , Parada Cardíaca/fisiopatologia , Pressão , SuínosRESUMO
The authors have designed an alternative infant cardiopulmonary bypass (CPB) system using the University of Texas neonatal pulsatile pump, which produces physiologic pulsatile flow and allows a low priming volume. This system has been tested with normothermic CPB (n = 8), and deep hypothermic circulatory arrest (n = 14) in 3 kg piglets. Data obtained during these studies suggest that this system can produce flow characteristics that approximate normal physiologic values. Unlike other pulsatile pumps, this pump can produce a very small stroke volume, ranging from 0.5 to 7.1 ml with a pump rate of 120 beats/min. These stroke volumes correspond to our target value of 1 ml/kg body weight. This system is designed to cause minimal hemodilution and minimal exposure of blood to foreign surface areas. The pump does not produce negative pressure, and therefore the venous reservoir is not essential, and only a cardiotomy reservoir is required. Conclusions after in vivo testing are, first, that physiologic pulsatile flow can be achieved readily with this system using a 10 Fr aortic cannula in 3 kg piglets; and second, that a significant reduction in priming volume and hemodilution can be obtained using this system.
Assuntos
Ponte Cardiopulmonar/instrumentação , Animais , Pressão Sanguínea , Volume Sanguíneo , Desenho de Equipamento , Estudos de Avaliação como Assunto , Hemodiluição , Hemodinâmica , Humanos , Lactente , Recém-Nascido , Oxigenadores de Membrana , Fluxo Pulsátil , Volume Sistólico , SuínosRESUMO
The effectiveness of an infant pulsatile cardiopulmonary bypass (CPB) system on maintaining regional cerebral blood flow (CBF) using two different types of aortic cannulae in 3 kg piglets has been investigated. The University of Texas Neonatal Pulsatile Pump was used with either a DLP (Group I, n = 6) or an Elecath (Group II, n = 7) 10Fr aortic cannula. In all the subjects, nasopharyngeal temperature was reduced to 18 degrees C, followed by 1 hr of deep hypothermic circulatory arrest (DHCA), then 45 min of rewarming. During cooling and rewarming, alpha-stat blood gas management was used. The radionuclide labeled microsphere technique was used to determine blood flows in the cerebellum, basal ganglia, brainstem, right and left hemispheres, as well as global CBF (ml/100 g/min). When the DLP aortic cannula was used, regional and global CBF appeared to be higher pre- and post DHCA. In both groups regional CBF was significantly decreased following DHCA. Although better pulsatile flow was attained using the DLP cannula and this may have resulted in higher regional CBF, these results must be interpreted in light of the large standard deviations noted when this cannula was chosen for the studies. These results demonstrate the importance of choosing an appropriate aortic cannula for measuring regional CBF with a pulsatile neonate-infant CPB system.
Assuntos
Ponte Cardiopulmonar/efeitos adversos , Cateterismo/instrumentação , Circulação Cerebrovascular , Animais , Animais Recém-Nascidos , Aorta , Gânglios da Base/irrigação sanguínea , Lesões Encefálicas/diagnóstico , Lesões Encefálicas/etiologia , Lesões Encefálicas/fisiopatologia , Tronco Encefálico/irrigação sanguínea , Cateterismo/efeitos adversos , Cerebelo/irrigação sanguínea , Humanos , Lactente , Recém-Nascido , Microesferas , Modelos Biológicos , Fluxo Sanguíneo Regional , SuínosRESUMO
During extracorporeal circulation in cardiopulmonary bypass (CPB) surgery, blood is exposed to anomalous mechanical and environmental factors, such as high shear stress, turbulence, decreased oncotic pressure caused by dilution of plasma, and moderate and especially deep hypothermia widely applied during CPB in infants. These factors cause damage to the red blood cells (RBCs), which is manifest by immediate and delayed hemolysis and by changes in the mechanical properties of RBCs. These changes include, in particular, decrease in RBC deformability impeding the passage of RBCs through the microvessels and may contribute to the complications associated with CPB surgery. We investigated in vitro the independent and combined effects of hypothermia, plasma dilution, and mechanical stress on deformability of bovine RBCs. Our studies showed each of these factors to cause a significant decrease in the deformability of RBCs, especially acting synergistically. The impairment of RBC deformability caused by hypothermia was found to be more pronounced for RBCs suspended in phosphate buffered saline (PBS) than for RBCs suspended in plasma. The decrease in RBC deformability caused by mechanical stress was significantly exacerbated by dilution of plasma with PBS. In summary, results of our in vitro study strongly point to a possible detrimental consequence of conventional CPB arising from increased RBC rigidity, which may lead to impaired microcirculation and tissue oxygen supply.
Assuntos
Ponte Cardiopulmonar , Temperatura Baixa , Deformação Eritrocítica , Hemodiluição , Animais , Bovinos , Estresse MecânicoRESUMO
An alternate physiologic pulsatile pump (PPP) system was designed and evaluated to produce sufficient pulsatility during neonate-infant open heart surgery. This hydraulically driven pump system has a unique "dual" pumping chamber mechanism. The first chamber is placed between the venous reservoir and oxygenator and the second chamber between the oxygenator and patient. Each chamber has two unidirectional tricuspid valves. Stroke volume (0.2-10 ml), upstroke rise time (10-350 msec), and pump rate (2-250 beats per minute [bpm]) can be adjusted independently to produce adequate pulsatility. This system has been tested in 3-kg piglets (n = 6), with a pump flow of 150 ml/kg/min, a pump rate of 150 bpm, and a pump ejection time of 110 msec. After initiation of cardiopulmonary bypass (CPB), all animals were subjected to 25 minutes of hypothermia to reduce the rectal temperatures to 18 degrees C, 60 minutes of deep hypothermic circulatory arrest (DHCA), then 10 minutes of cold perfusion with a full pump flow, and 40 minutes of rewarming. During CPB, mean arterial pressures were kept at less than 50 mm Hg. Mean extracorporeal circuit pressure (ECCP), the pressure drop of a 10 French aortic cannula, and the pulse pressure were 67+/-9, 21+/-6, and 16+/-2 mm Hg, respectively. All values are represented as mean+/-SD. No regurgitation or abnormal hemolysis has been detected during these experiments. The oxygenator had no damping effect on the quality of the pulsatility because of the dual chamber pumping mechanism. The ECCP was also significantly lower than any other known pulsatile system. We conclude that this system, with a 10 French aortic cannula and arterial filter, produces adequate pulsatility in 3 kg piglets.
Assuntos
Ponte Cardiopulmonar/instrumentação , Animais , Pressão Sanguínea , Modelos Animais de Doenças , Desenho de Equipamento , Artéria Femoral/fisiopatologia , Humanos , Lactente , Recém-Nascido , Monitorização Intraoperatória , Fluxo Pulsátil , Pulso Arterial , SuínosRESUMO
Cardiopulmonary bypass surgical techniques that allow a surgeon to operate on the infant's heart use an extracorporeal circuit consisting of a pump, oxygenator, arterial and venous reservoirs, cannulae, an arterial filter, and tubing. The extracorporeal technique currently used in infants and neonates is sometimes associated with neurologic damage. We are developing a modified cardiopulmonary bypass system for neonates that has been tested in vitro and in one animal in vivo. Unlike other extracorporeal circuits which use steady flow, this system utilizes pulsatile flow, a low prime volume (500 ml) and a closed circuit. During in vitro experiments, the pseudo patient's mean arterial pressure was kept constant at 40 mmHg and the extracorporeal circuit pressure did not exceed a mean pressure of 200 mmHg. In our single in vivo experiment, the primary objective was to determine whether physiologic pulsatility with a 10 F (3.3 mm) aortic cannula could be achieved. The results suggest that this is possible.