RESUMO
The invasive plant Alliaria petiolata (garlic mustard) has spread throughout forest understory and edge communities in much of North America, but its persistence, density, and impacts have varied across sites and time. Surveying the literature since 2008, we evaluated both previously proposed and new mechanisms for garlic mustard's invasion success and note how they interact and vary across ecological contexts. We analyzed how and where garlic mustard has been studied and found a lack of multisite and longitudinal studies, as well as regions that may be under- or overstudied, leading to poor representation for understanding and predicting future invasion dynamics. Inconsistencies in how sampling units are scaled and defined can also hamper our understanding of invasive species. We present new conceptual models for garlic mustard invasion from a macrosystems perspective, emphasizing the importance of synergies and feedbacks among mechanisms across spatial and temporal scales to produce variable ecological contexts.
RESUMO
Landscape-scale alterations that accompany urbanization may negatively affect the population structure of wildlife species such as freshwater turtles. Changes to nesting sites and higher mortality rates due to vehicular collisions and increased predator populations may particularly affect immature turtles and mature female turtles. We hypothesized that the proportions of adult female and immature turtles in a population will negatively correlate with landscape urbanization. As a collaborative effort of the Ecological Research as Education Network (EREN), we sampled freshwater turtle populations in 11 states across the central and eastern United States. Contrary to expectations, we found a significant positive relationship between proportions of mature female painted turtles (Chrysemys picta) and urbanization. We did not detect a relationship between urbanization and proportions of immature turtles. Urbanization may alter the thermal environment of nesting sites such that more females are produced as urbanization increases. Our approach of creating a collaborative network of scientists and students at undergraduate institutions proved valuable in terms of testing our hypothesis over a large spatial scale while also allowing students to gain hands-on experience in conservation science.
Assuntos
Tartarugas , Animais , Conservação dos Recursos Naturais , Feminino , Água Doce , Estados Unidos , UrbanizaçãoAssuntos
Tartarugas , Animais , Conservação dos Recursos Naturais , Água Doce , Estados Unidos , UrbanizaçãoRESUMO
The submersed macrophyte Utricularia inflata has invaded lakes in northern New York State, thereby threatening native isoetids such as Eriocaulon aquaticum. Isoetids often dominate and modify softwater lakes due to their capacity to oxidize sediment and thus influence solute mobilization. Greenhouse experiments tested the hypotheses that U. inflata invasion could result in higher porewater iron (Fe) concentrations and greater ammonium (NH4 (+)) and Fe release from the sediment into the water column, and that this mobilization would stimulate further U. inflata growth. In the first experiment, three levels of U. inflata impact on E. aquaticum were imposed using sediment cores overlain by lake water: E. aquaticum alone, E. aquaticum with a cover of U. inflata, and bare sediment--the latter to simulate local extirpation of the isoetid by the invasive. After 16 weeks, sediment porewater NH4 (+) and total dissolved Fe concentrations were significantly higher (P < 0.05) for the U. inflata and bare sediment treatments. Water column concentrations of these solutes were five-fold higher (P < 0.05) for the bare sediment treatment than E. aquaticum alone, indicating that isoetid extirpation by U. inflata can compromise water quality. A second experiment demonstrated that U. inflata grew faster over bare sediment than over sediment with E. aquaticum (P < 0.05), likely due to greater solute mobilization in the absence of E. aquaticum. Where U. inflata causes a decline of native isoetids in Adirondack Mountain lakes, changes to lake sediment and water chemistry can create a positive feedback loop further escalating the impact of this invasive species.
Assuntos
Retroalimentação Fisiológica/fisiologia , Sedimentos Geológicos , Espécies Introduzidas , Magnoliopsida/fisiologia , Amônia/metabolismo , Eriocaulaceae/fisiologia , Água Doce , Ferro/metabolismo , Lagos , Magnoliopsida/crescimento & desenvolvimento , New York , Oxirredução , Qualidade da ÁguaRESUMO
The submersed macrophyte Utricularia inflata (inflated bladderwort) is a recent invader of Adirondack Mountain lakes (NY, USA). A 15-week greenhouse experiment and a 7-week field experiment were conducted to test the hypothesis that this rootless species fundamentally changes sediment chemistry through its suppression of the native short-statured species, Eriocaulon aquaticum. E. aquaticum has an extensive root system that releases oxygen into the sediment. In greenhouse conditions, E. aquaticum raised the porewater redox potential of otherwise bare sediment from 25 to 324 mV, lowered the sediment porewater pH from 5.7 to 4.6, and depleted the dissolved inorganic carbon and ammonium concentrations in the sediment porewater by 68.4 and 96.0%, respectively (P<0.001 for all four parameters). A cover of U. inflata over E. aquaticum, however, greatly reduced the latter's effect on redox potential (P<0.001), dissolved solutes (P<0.001), and pH (P<0.05). E. aquaticum biomass increased during the greenhouse experiment in the absence of U. inflata, but decreased in its presence (P<0.001). Redox and growth rate results from the field experiment paralleled those from the greenhouse experiment. Our data suggest that U. inflata may change nutrient cycling in Adirondack lake ecosystems by reducing the growth of native isoetid macrophytes, such as E. aquaticum, and consequently altering key features of sediment chemistry.