Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 24(1)2018 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-30602705

RESUMO

The spectrum and efficacy of available antileishmanial drugs is limited. In the present work we evaluated in vitro the antiproliferative activity of 11 compounds based on tetradentate polyamines compounds against three Leishmania species (L. braziliensis, L. donovani and L. infantum) and the possible mechanism of action. We identified six compounds (3, 5, 6, 7, 8 and 10) effective against all three Leishmania spp both on extracellular and intracellular forms. These six most active leishmanicidal compounds also prevent the infection of host cells. Nevertheless, only compound 7 is targeted against the Leishmania SOD. Meanwhile, on the glucose metabolism the tested compounds have a species-specific effect on Leishmania spp.: L. braziliensis was affected mainly by 10 and 8, L. donovani by 7, and L. infantum by 5 and 3. Finally, the cellular ultrastructure was mainly damaged by 11 in the three Leishmania spp. studied. These identified antileishmania candidates constitute a good alternative treatment and will be further studied.


Assuntos
Antiprotozoários/síntese química , Leishmania/enzimologia , Poliaminas/síntese química , Superóxido Dismutase/antagonistas & inibidores , Animais , Antiprotozoários/química , Antiprotozoários/farmacologia , Linhagem Celular , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Leishmania/efeitos dos fármacos , Leishmania/patogenicidade , Macrófagos/citologia , Macrófagos/efeitos dos fármacos , Macrófagos/parasitologia , Camundongos , Microscopia Eletrônica de Transmissão , Estrutura Molecular , Testes de Sensibilidade Parasitária , Poliaminas/química , Poliaminas/farmacologia , Proteínas de Protozoários/antagonistas & inibidores
2.
Exp Parasitol ; 164: 20-30, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-26874306

RESUMO

In order to identify new compounds to treat Chagas disease during the acute phase with higher activity and lower toxicity than the reference drug benznidazole (Bz), a series of tetraamine-based compounds was prepared and their trypanocidal effects against Trypanosoma cruzi were evaluated by light microscopy through the determination of IC50 values. Cytotoxicity was determined by flow cytometry assays against Vero cells. In vivo assays were performed in BALB/c mice, in which the parasitemia levels were quantified by fresh blood examination; the assignment of a cure was determined by PCR and reactivation of blood parasitemia levels after immunosuppression. The mechanism of action was elucidated at metabolic and ultra-structural levels by (1)H NMR and TEM studies. Finally, as tetraamines are potentially capable of casuing oxidative damage in the parasites, the study was completed by assessing their activity as potential iron superoxide dismutase (Fe-SOD) and trypanothione reductase (TR) inhibitors. High-selectivity indexes observed in vitro were the basis of promoting three of the tested compounds to in vivo assays. The tests on the murine model for the acute phase of Chagas disease showed better parasitemia inhibition values than those found for Bz. Tetraamines 2 and 3 induced a remarkable decrease in the reactivation of parasitemia after immunosuppression and curative rates of 33 and 50%, respectively. Tetraamine 3 turned out to be a great inhibitor of Fe-SOD and TR. The high anti-parasitic activity and low toxicity render these tetraamines appropriate molecules for the development of an affordable anti-Chagas agent.


Assuntos
Doença de Chagas/tratamento farmacológico , Poliaminas/farmacologia , Trypanosoma cruzi/efeitos dos fármacos , Animais , Doença de Chagas/parasitologia , Chlorocebus aethiops , Feminino , Camundongos , NADH NADPH Oxirredutases/antagonistas & inibidores , Poliaminas/química , Superóxido Dismutase/antagonistas & inibidores , Trypanosoma cruzi/metabolismo , Trypanosoma cruzi/ultraestrutura , Células Vero
3.
Exp Parasitol ; 170: 36-49, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27480054

RESUMO

In order to evaluate the in vitro leishmanicidal activity of N,N'-Squaramides derivatives, compounds that feature both hydrogen bond donor and acceptor groups and are capable of multiple interactions with complementary sites, against Leishmania infantum, Leishmania braziliensis and Leishmania donovani a series of 18compounds was prepared and assayed on extracellular and intracellular parasite forms. Infectivity and cytotoxicity tests were performed on J774.2 macrophage cells using meglumine antimoniate (Glucantime) as the reference drug. Changes in metabolite excretion by 1H-NMR and the ultrastructural alterations occurring in the parasites treated using transmission electron microscopy (TEM), was analyzed. Compounds 1, 7, 11, 14 and 17 were the more active and less toxic. Infection rates showed that the order of effectiveness was 17 > 11 > 14 > 7 for both L. infantum and L. braziliensis and in the same way, the compound 1 for L. donovani. All these compounds have altered the typical structure of the promastigotes, glycosomes and mitochondria. These severe modifications by the compounds are the ultimate reasons for the alterations observed in the excretion products. The Squaramide 17 (3-(butylamino)-4-((3-(dimetilamino)propyl)(methyl)amino)cyclobut-3-en-1,2-dione) was clearly the most efficient of all compounds. The data appear to confirm that the severe modifications generated in organelles such as glycosomes or mitochondria by the compounds are the ultimate reasons for the alterations observed in the excretion products of all species. The activity, stability, low cost of starting materials, and straightforward synthesis make amino squaramides appropriate molecules for the development of an affordable anti-leishmanial agent.


Assuntos
Leishmania braziliensis/efeitos dos fármacos , Leishmania donovani/efeitos dos fármacos , Leishmania infantum/efeitos dos fármacos , Macrófagos/parasitologia , Quinina/análogos & derivados , Animais , Linhagem Celular , Citometria de Fluxo , Concentração Inibidora 50 , Leishmania braziliensis/metabolismo , Leishmania braziliensis/ultraestrutura , Leishmania donovani/metabolismo , Leishmania donovani/ultraestrutura , Leishmania infantum/metabolismo , Leishmania infantum/ultraestrutura , Macrófagos/efeitos dos fármacos , Camundongos , Microscopia Eletrônica de Transmissão , Quinina/química , Quinina/farmacologia , Quinina/toxicidade
4.
Int J Parasitol Drugs Drug Resist ; 5(3): 110-6, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26236582

RESUMO

In order to identify new compounds to treat Chagas disease during the acute phase with higher activity and lower toxicity than the reference drug benznidazole (Bz), two hydroxyphthalazine derivative compounds were prepared and their trypanocidal effects against Trypanosoma cruzi were evaluated by light microscopy through the determination of IC50 values. Cytotoxicity was determined by flow cytometry assays against Vero cells. In vivo assays were performed in BALB/c mice, in which the parasitemia levels were quantified by fresh blood examination; the assignment of a cure was determined by reactivation of blood parasitemia levels after immunosuppression. The mechanism of action was elucidated at metabolic and ultra-structural levels, by (1)H NMR and TEM studies. Finally, as these compounds are potentially capable of causing oxidative damage in the parasites, the study was completed, by assessing their activity as potential iron superoxide dismutase (Fe-SOD) inhibitors. High-selectivity indices observed in vitro were the basis of promoting one of the tested compounds to in vivo assays. The tests on the murine model for the acute phase of Chagas disease showed better parasitemia inhibition values than those found for Bz. Compound 2 induced a remarkable decrease in the reactivation of parasitemia after immunosuppression. Compound 2 turned out to be a great inhibitor of Fe-SOD. The high antiparasitic activity and low toxicity together with the modest costs for the starting materials render this compound an appropriate molecule for the development of an affordable anti-Chagas agent.


Assuntos
Doença de Chagas/parasitologia , Nitroimidazóis/uso terapêutico , Parasitemia/tratamento farmacológico , Superóxido Dismutase/antagonistas & inibidores , Trypanosoma cruzi/efeitos dos fármacos , Animais , Doença de Chagas/tratamento farmacológico , Ciclofosfamida/toxicidade , Hospedeiro Imunocomprometido , Imunossupressores/toxicidade , Camundongos , Camundongos Endogâmicos BALB C , Estrutura Molecular , Nitroimidazóis/química , Nitroimidazóis/farmacologia , Tripanossomicidas/química , Tripanossomicidas/farmacologia , Tripanossomicidas/uso terapêutico
5.
J Med Chem ; 57(3): 987-99, 2014 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-24410674

RESUMO

Access to basic drugs is a major issue in developing countries. Chagas disease caused by Trypanosoma cruzi is a paradigmatic example of a chronic disease without an effective treatment. Current treatments based on benznidazole and nifurtimox are expensive, ineffective, and toxic. N,N'-Squaramides are amide-type compounds that feature both hydrogen bond donor and acceptor groups and are capable of multiple interactions with complementary sites. When combined with amine and carboxylic groups, squaramide compounds have increased solubility and therefore make suitable therapeutic agents. In this work, we introduce a group of Lipinski's rule of five compliant squaramides as candidates for treating Chagas disease. The in vivo studies confirmed the positive expectations arising from the preliminary in vitro studies, revealing compound 17 to be the most effective for both acute and chronic phases. The activity, stability, low cost of starting materials, and straightforward synthesis make amino squaramides appropriate molecules for the development of an affordable anti-Chagasic agent.


Assuntos
Doença de Chagas/tratamento farmacológico , Ciclobutanos/síntese química , Diaminas/síntese química , Tripanossomicidas/síntese química , Animais , Doença de Chagas/imunologia , Doença de Chagas/parasitologia , Chlorocebus aethiops , Ciclobutanos/farmacologia , Ciclobutanos/toxicidade , Diaminas/farmacologia , Diaminas/toxicidade , Feminino , Terapia de Imunossupressão , Camundongos , Camundongos Endogâmicos BALB C , Relação Estrutura-Atividade , Tripanossomicidas/farmacologia , Tripanossomicidas/toxicidade , Trypanosoma cruzi/efeitos dos fármacos , Trypanosoma cruzi/metabolismo , Trypanosoma cruzi/ultraestrutura , Células Vero
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA