Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 75(5): 982-995.e9, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31444106

RESUMO

Long non-coding RNAs (lncRNAs) are key regulatory molecules, but unlike with other RNAs, the direct link between their tertiary structure motifs and their function has proven elusive. Here we report structural and functional studies of human maternally expressed gene 3 (MEG3), a tumor suppressor lncRNA that modulates the p53 response. We found that, in an evolutionary conserved region of MEG3, two distal motifs interact by base complementarity to form alternative, mutually exclusive pseudoknot structures ("kissing loops"). Mutations that disrupt these interactions impair MEG3-dependent p53 stimulation in vivo and disrupt MEG3 folding in vitro. These findings provide mechanistic insights into regulation of the p53 pathway by MEG3 and reveal how conserved motifs of tertiary structure can regulate lncRNA biological function.


Assuntos
Genes Supressores de Tumor , Motivos de Nucleotídeos , RNA Longo não Codificante/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Células HCT116 , Humanos , Dobramento de RNA , RNA Longo não Codificante/genética , Proteína Supressora de Tumor p53/genética
2.
Genome Res ; 31(3): 461-471, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33574136

RESUMO

CRISPR-Cas9 deletion (CRISPR-del) is the leading approach for eliminating DNA from mammalian cells and underpins a variety of genome-editing applications. Target DNA, defined by a pair of double-strand breaks (DSBs), is removed during nonhomologous end-joining (NHEJ). However, the low efficiency of CRISPR-del results in laborious experiments and false-negative results. By using an endogenous reporter system, we show that repression of the DNA-dependent protein kinase catalytic subunit (DNA-PKcs)-an early step in NHEJ-yields substantial increases in DNA deletion. This is observed across diverse cell lines, gene delivery methods, commercial inhibitors, and guide RNAs, including those that otherwise display negligible activity. We further show that DNA-PKcs inhibition can be used to boost the sensitivity of pooled functional screens and detect true-positive hits that would otherwise be overlooked. Thus, delaying the kinetics of NHEJ relative to DSB formation is a simple and effective means of enhancing CRISPR-deletion.


Assuntos
Sistemas CRISPR-Cas/genética , Quebras de DNA de Cadeia Dupla , Proteína Quinase Ativada por DNA/antagonistas & inibidores , Edição de Genes , Deleção de Sequência , Animais , DNA/genética , DNA/metabolismo , Reparo do DNA por Junção de Extremidades , Proteína Quinase Ativada por DNA/metabolismo , Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/metabolismo
3.
Nat Commun ; 14(1): 3342, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37291246

RESUMO

Long noncoding RNAs (lncRNAs) are linked to cancer via pathogenic changes in their expression levels. Yet, it remains unclear whether lncRNAs can also impact tumour cell fitness via function-altering somatic "driver" mutations. To search for such driver-lncRNAs, we here perform a genome-wide analysis of fitness-altering single nucleotide variants (SNVs) across a cohort of 2583 primary and 3527 metastatic tumours. The resulting 54 mutated and positively-selected lncRNAs are significantly enriched for previously-reported cancer genes and a range of clinical and genomic features. A number of these lncRNAs promote tumour cell proliferation when overexpressed in in vitro models. Our results also highlight a dense SNV hotspot in the widely-studied NEAT1 oncogene. To directly evaluate the functional significance of NEAT1 SNVs, we use in cellulo mutagenesis to introduce tumour-like mutations in the gene and observe a significant and reproducible increase in cell fitness, both in vitro and in a mouse model. Mechanistic studies reveal that SNVs remodel the NEAT1 ribonucleoprotein and boost subnuclear paraspeckles. In summary, this work demonstrates the utility of driver analysis for mapping cancer-promoting lncRNAs, and provides experimental evidence that somatic mutations can act through lncRNAs to enhance pathological cancer cell fitness.


Assuntos
Neoplasias , RNA Longo não Codificante , Animais , Camundongos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias/genética , Mutação , Oncogenes , Genômica
4.
Nat Protoc ; 15(6): 2107-2139, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32451442

RESUMO

Long noncoding RNAs (lncRNAs) are recently discovered transcripts that regulate vital cellular processes, such as cellular differentiation and DNA replication, and are crucially connected to diseases. Although the 3D structures of lncRNAs are key determinants of their function, the unprecedented molecular complexity of lncRNAs has so far precluded their 3D structural characterization at high resolution. It is thus paramount to develop novel approaches for biochemical and biophysical characterization of these challenging targets. Here, we present a protocol that integrates non-denaturing lncRNA purification with in-solution hydrodynamic analysis and single-particle atomic force microscopy (AFM) imaging to produce highly homogeneous lncRNA preparations and visualize their 3D topology at ~15-Å resolution. Our protocol is suitable for imaging lncRNAs in biologically active conformations and for measuring structural defects of functionally inactive mutants that have been identified by cell-based functional assays. Once optimized for the specific target lncRNA of choice, our protocol leads from cloning to AFM imaging within 3-4 weeks and can be implemented using state-of-the-art biochemical and biophysical instrumentation by trained researchers familiar with RNA handling and supported by AFM and small-angle X-ray scattering (SAXS) experts.


Assuntos
Hidrodinâmica , Microscopia de Força Atômica/métodos , RNA Longo não Codificante/química , Processamento de Imagem Assistida por Computador
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA