Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Int J Mol Sci ; 24(22)2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-38003582

RESUMO

In many animals belonging to different taxa, venoms evolved as a means of defense and/or a means of attack/hunting [...].


Assuntos
Venenos de Crotalídeos , Toxinas Biológicas , Animais , Antivenenos/farmacologia
2.
Int J Mol Sci ; 24(11)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37298207

RESUMO

Cardiotoxins (CaTx) of the three-finger toxin family are one of the main components of cobra venoms. Depending on the structure of the N-terminal or the central polypeptide loop, they are classified into either group I and II or P- and S-types, respectively, and toxins of different groups or types interact with lipid membranes variably. While their main target in the organism is the cardiovascular system, there is no data on the effects of CaTxs from different groups or types on cardiomyocytes. To evaluate these effects, a fluorescence measurement of intracellular Ca2+ concentration and an assessment of the rat cardiomyocytes' shape were used. The obtained results showed that CaTxs of group I containing two adjacent proline residues in the N-terminal loop were less toxic to cardiomyocytes than group II toxins and that CaTxs of S-type were less active than P-type ones. The highest activity was observed for Naja oxiana cobra cardiotoxin 2, which is of P-type and belongs to group II. For the first time, the effects of CaTxs of different groups and types on the cardiomyocytes were studied, and the data obtained showed that the CaTx toxicity to cardiomyocytes depends on the structures both of the N-terminal and central polypeptide loops.


Assuntos
Proteínas Cardiotóxicas de Elapídeos , Contratura , Toxinas Biológicas , Ratos , Animais , Proteínas Cardiotóxicas de Elapídeos/farmacologia , Proteínas Cardiotóxicas de Elapídeos/toxicidade , Cálcio , Miócitos Cardíacos , Venenos Elapídicos/química , Peptídeos , Cálcio da Dieta
3.
Cell Mol Life Sci ; 78(23): 7777-7794, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34714362

RESUMO

The COVID-19 pandemic caused by SARS-CoV-2 requires new treatments both to alleviate the symptoms and to prevent the spread of this disease. Previous studies demonstrated good antiviral and virucidal activity of phospholipase A2s (PLA2s) from snake venoms against viruses from different families but there was no data for coronaviruses. Here we show that PLA2s from snake venoms protect Vero E6 cells against SARS-CoV-2 cytopathic effects. PLA2s showed low cytotoxicity to Vero E6 cells with some activity at micromolar concentrations, but strong antiviral activity at nanomolar concentrations. Dimeric PLA2 from the viper Vipera nikolskii and its subunits manifested especially potent virucidal effects, which were related to their phospholipolytic activity, and inhibited cell-cell fusion mediated by the SARS-CoV-2 spike glycoprotein. Moreover, PLA2s interfered with binding both of an antibody against ACE2 and of the receptor-binding domain of the glycoprotein S to 293T/ACE2 cells. This is the first demonstration of a detrimental effect of PLA2s on ß-coronaviruses. Thus, snake PLA2s are promising for the development of antiviral drugs that target the viral envelope, and could also prove to be useful tools to study the interaction of viruses with host cells.


Assuntos
Fosfolipases A2/farmacologia , SARS-CoV-2/efeitos dos fármacos , Glicoproteína da Espícula de Coronavírus/metabolismo , Venenos de Víboras/farmacologia , Ligação Viral/efeitos dos fármacos , Enzima de Conversão de Angiotensina 2/metabolismo , Animais , Afinidade de Anticorpos/efeitos dos fármacos , Antivirais/farmacologia , Fusão Celular , Linhagem Celular , Chlorocebus aethiops , Efeito Citopatogênico Viral/efeitos dos fármacos , Células HEK293 , Humanos , Modelos Moleculares , Domínios Proteicos/efeitos dos fármacos , Ressonância de Plasmônio de Superfície , Células Vero , Venenos de Víboras/enzimologia , Tratamento Farmacológico da COVID-19
4.
J Neurochem ; 158(6): 1223-1235, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-32648941

RESUMO

The first toxin to give rise to the three-finger protein (TFP) family was α-bungarotoxin (α-Bgt) from Bungarus multicinctus krait venom. α-Bgt was crucial for research on nicotinic acetylcholine receptors (nAChRs), and in this Review article we focus on present data for snake venom TFPs and those of the Ly6/uPAR family from mammalians (membrane-bound Lynx1 and secreted SLURP-1) interacting with nAChRs. Recently isolated from Bungarus candidus venom, αδ-bungarotoxins differ from α-Bgt: they bind more reversibly and distinguish two binding sites in Torpedo californica nAChR. Naja kaouthia α-cobratoxin, classical blocker of nAChRs, was shown to inhibit certain GABA-A receptor subtypes, whereas α-cobratoxin dimer with 2 intermolecular disulfides has a novel type of 3D structure. Non-conventional toxin WTX has additional 5th disulfide not in the central loop, as α-Bgt, but in the N-terminal loop, like all Ly6/uPAR proteins, and inhibits α7 and Torpedo nAChRs. A water-soluble form of Lynx1, ws-Lynx1, was expressed in E. coli, its 1 H-NMR structure and binding to several nAChRs determined. For SLURP-1, similar information was obtained with its recombinant analogue rSLURP-1. A common feature of ws-Lynx1, rSLURP-1, and WTX is their activity against nAChRs and muscarinic acetylcholine receptors. Synthetic SLURP-1, identical to the natural protein, demonstrated some differences from rSLURP-1 in distinguishing nAChR subtypes. The loop II fragment of the Lynx1 was synthesized having the same µM affinity for the Torpedo nAChR as ws-Lynx1. This review illustrates the productivity of parallel research of nAChR interactions with the two TFP groups.


Assuntos
Bungarotoxinas/química , Bungarotoxinas/metabolismo , Receptores Nicotínicos/química , Receptores Nicotínicos/metabolismo , Animais , Sítios de Ligação/fisiologia , Humanos , Ligação Proteica/fisiologia , Estrutura Secundária de Proteína , Serpentes , Especificidade da Espécie
5.
Biochem Biophys Res Commun ; 558: 141-146, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-33915327

RESUMO

Cobra cytotoxins (CTs), the three-fingered proteins, feature high amino acid sequence homology in the beta-strands and variations in the loop regions. We selected a pair of cytotoxins from Naja kaouthia crude venom to clarify the sequence-structure relationships. Using chromatography and mass spectroscopy, we separated and identified the mixture of cytotoxins 2 and 3, differentiated by the only Val 41/Ala 41 substitution. Here, using natural abundance 13C, 15N NMR-spectroscopy we performed chemical shift assignments of the signals of the both toxins in aqueous solution in the major and minor forms. Combining NOE and chemical shift data, the toxins' spatial structure was determined. Finally, we proved that the tip of the "finger"-2, or the loop-2 of cytotoxins adopts the shape of an omega-loop with a tightly-bound water molecule in its cavity. Comparison with other NMR and X-ray structures of cytotoxins possessing different amino acid sequences reveals spatial similarity in this family of proteins, including the loop-2 region, previously considered to be flexible.


Assuntos
Proteínas Cardiotóxicas de Elapídeos/química , Proteínas Cardiotóxicas de Elapídeos/genética , Sequência de Aminoácidos , Substituição de Aminoácidos , Animais , Proteínas Cardiotóxicas de Elapídeos/classificação , Venenos Elapídicos/química , Venenos Elapídicos/genética , Elapidae/genética , Modelos Moleculares , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica
6.
Mar Drugs ; 19(2)2021 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-33669933

RESUMO

Among the brain tumors, glioma is the most common. In general, different biochemical mechanisms, involving nicotinic acetylcholine receptors (nAChRs) and the arachidonic acid cascade are involved in oncogenesis. Although the engagement of the latter in survival and proliferation of rat C6 glioma has been shown, there are practically no data about the presence and the role of nAChRs in C6 cells. In this work we studied the effects of nAChR antagonists, marine snail α-conotoxins and snake α-cobratoxin, on the survival and proliferation of C6 glioma cells. The effects of the lipoxygenase and cyclooxygenase inhibitors either alone or together with α-conotoxins and α-cobratoxin were studied in parallel. It was found that α-conotoxins and α-cobratoxin promoted the proliferation of C6 glioma cells, while nicotine had practically no effect at concentrations below 1 µL/mL. Nordihydroguaiaretic acid, a nonspecific lipoxygenase inhibitor, and baicalein, a 12-lipoxygenase inhibitor, exerted antiproliferative and cytotoxic effects on C6 cells. nAChR inhibitors weaken this effect after 24 h cultivation but produced no effects at longer times. Quantitative real-time polymerase chain reaction showed that mRNA for α4, α7, ß2 and ß4 subunits of nAChR were expressed in C6 glioma cells. This is the first indication for involvement of nAChRs in mechanisms of glioma cell proliferation.


Assuntos
Proteínas Neurotóxicas de Elapídeos/farmacologia , Conotoxinas/farmacologia , Glioma/tratamento farmacológico , Antagonistas Nicotínicos/farmacologia , Animais , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Inibidores de Ciclo-Oxigenase/farmacologia , Glioma/patologia , Inibidores de Lipoxigenase/farmacologia , Nicotina/farmacologia , Ratos , Receptores Nicotínicos/efeitos dos fármacos , Receptores Nicotínicos/metabolismo , Fatores de Tempo
7.
J Neurochem ; 155(3): 274-284, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32248535

RESUMO

Excitatory α7 neuronal nicotinic receptors (nAChR) are widely expressed in the central and peripheral nervous and immune systems and are important for learning, memory, and immune response regulation. Specific α7 nAChR ligands, including positive allosteric modulators are promising to treat cognitive disorders, inflammatory processes, and pain. One of them, PNU-120596, highly increased the neuron response to α7 agonists and retarded desensitization, showing selectivity for α7 as compared to heteromeric nAChRs, but was not examined at the inhibitory ligand-gated channels. We studied PNU-120596 action on anion-conducting channels using voltage-clamp techniques: it slightly potentiated the response of human glycine receptors expressed in PC12 cells, of rat GABAA receptors in cerebellar Purkinje cells and mouse GABAA Rs heterologously expressed in Xenopus oocytes. On the contrary, PNU-120596 exerted an inhibitory effect on the receptors mediating anion currents in Lymnaea stagnalis neurons: two nAChR subtypes, GABA and glutamate receptors. Acceleration of the current decay, contrary to slowing down desensitization in mammalian α7 nAChR, was observed in L. stagnalis neurons predominantly expressing one of the two nAChR subtypes. Thus, PNU-120596 effect on these anion-selective nAChRs was just opposite to the action on the mammalian cation-selective α7 nAChRs. A comparison of PNU-120596 molecule docked to the models of transmembrane domains of the human α7 AChR and two subunits of L. stagnalis nAChR demonstrated some differences in contacts with the amino acid residues important for PNU-120596 action on the α7 nAChR. Thus, our results show that PNU-120596 action depends on a particular subtype of these Cys-loop receptors.


Assuntos
Canais de Cloreto/metabolismo , Isoxazóis/farmacologia , Canais Iônicos de Abertura Ativada por Ligante/metabolismo , Compostos de Fenilureia/farmacologia , Receptor Nicotínico de Acetilcolina alfa7/agonistas , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Regulação Alostérica/efeitos dos fármacos , Regulação Alostérica/fisiologia , Sequência de Aminoácidos , Animais , Células Cultivadas , Canais de Cloreto/antagonistas & inibidores , Canais de Cloreto/genética , Feminino , Humanos , Canais Iônicos de Abertura Ativada por Ligante/antagonistas & inibidores , Canais Iônicos de Abertura Ativada por Ligante/genética , Lymnaea , Células PC12 , Ratos , Ratos Wistar , Xenopus laevis , Receptor Nicotínico de Acetilcolina alfa7/genética
8.
Bioorg Med Chem Lett ; 30(3): 126890, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31870648

RESUMO

Antibacterial activity of the three-finger toxins from cobra venom, including cytotoxin 3 from N. kaouthia, cardiotoxin-like basic polypeptide A5 from N. naja (CLBP), and alpha-neurotoxin from N. oxiana venom, was investigated. All toxins failed to influence Gram-negative bacteria. The most pronounced activity against Bacillus subtilis was demonstrated by CLBP. The latter is ascribed to the presence of additional Lys-residues within the membrane-binding motif of this toxin.


Assuntos
Antibacterianos/química , Venenos Elapídicos/metabolismo , Peptídeos/química , Sequência de Aminoácidos , Animais , Antibacterianos/isolamento & purificação , Antibacterianos/farmacologia , Bacillus subtilis/efeitos dos fármacos , Cardiotoxinas/química , Elapidae/metabolismo , Escherichia coli/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Peptídeos/isolamento & purificação , Peptídeos/farmacologia , Estrutura Terciária de Proteína , Staphylococcus aureus/efeitos dos fármacos
9.
Biochem J ; 476(8): 1285-1302, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-30944155

RESUMO

αδ-Bungarotoxins, a novel group of long-chain α-neurotoxins, manifest different affinity to two agonist/competitive antagonist binding sites of muscle-type nicotinic acetylcholine receptors (nAChRs), being more active at the interface of α-δ subunits. Three isoforms (αδ-BgTx-1-3) were identified in Malayan Krait (Bungarus candidus) from Thailand by genomic DNA analysis; two of them (αδ-BgTx-1 and 2) were isolated from its venom. The toxins comprise 73 amino acid residues and 5 disulfide bridges, being homologous to α-bungarotoxin (α-BgTx), a classical blocker of muscle-type and neuronal α7, α8, and α9α10 nAChRs. The toxicity of αδ-BgTx-1 (LD50 = 0.17-0.28 µg/g mouse, i.p. injection) is essentially as high as that of α-BgTx. In the chick biventer cervicis nerve-muscle preparation, αδ-BgTx-1 completely abolished acetylcholine response, but in contrast with the block by α-BgTx, acetylcholine response was fully reversible by washing. αδ-BgTxs, similar to α-BgTx, bind with high affinity to α7 and muscle-type nAChRs. However, the major difference of αδ-BgTxs from α-BgTx and other naturally occurring α-neurotoxins is that αδ-BgTxs discriminate the two binding sites in the Torpedo californica and mouse muscle nAChRs showing up to two orders of magnitude higher affinity for the α-δ site as compared with α-ε or α-γ binding site interfaces. Molecular modeling and analysis of the literature provided possible explanations for these differences in binding mode; one of the probable reasons being the lower content of positively charged residues in αδ-BgTxs. Thus, αδ-BgTxs are new tools for studies on nAChRs.


Assuntos
Bungarotoxinas/química , Bungarus , Proteínas de Peixes/química , Proteínas Musculares/química , Receptores Nicotínicos/química , Animais , Sítios de Ligação , Bungarotoxinas/metabolismo , Feminino , Proteínas de Peixes/metabolismo , Masculino , Camundongos , Proteínas Musculares/metabolismo , Receptores Nicotínicos/metabolismo , Torpedo
10.
Mar Drugs ; 18(4)2020 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-32272633

RESUMO

Several biochemical mechanisms, including the arachidonic acid cascade and activation of nicotinic acetylcholine receptors (nAChRs), are involved in increased tumor survival. Combined application of inhibitors acting on these two pathways may result in a more pronounced antitumor effect. Here, we show that baicalein (selective 12-lipoxygenase inhibitor), nordihydroguaiaretic acid (non-selective lipoxygenase inhibitor), and indomethacin (non-selective cyclooxygenase inhibitor) are cytotoxic to Ehrlich carcinoma cells in vitro. Marine snail α-conotoxins PnIA, RgIA and ArIB11L16D, blockers of α3ß2/α6ß2, α9α10 and α7 nAChR subtypes, respectively, as well as α-cobratoxin, a blocker of α7 and muscle subtype nAChRs, exhibit low cytotoxicity, but enhance the antitumor effect of baicalein 1.4-fold after 24 h and that of nordihydroguaiaretic acid 1.8-3.9-fold after 48 h of cell cultivation. α-Conotoxin MII, a blocker of α6-containing and α3ß2 nAChR subtypes, increases the cytotoxic effect of indomethacin 1.9-fold after 48 h of cultivation. In vivo, baicalein, α-conotoxins MII and PnIA inhibit Ehrlich carcinoma growth and increase mouse survival; these effects are greatly enhanced by the combined application of α-conotoxin MII with indomethacin or conotoxin PnIA with baicalein. Thus, we show, for the first time, antitumor synergism of α-conotoxins and arachidonic acid cascade inhibitors.


Assuntos
Carcinoma de Ehrlich/tratamento farmacológico , Sobrevivência Celular/efeitos dos fármacos , Conotoxinas/farmacologia , Inibidores de Ciclo-Oxigenase/farmacologia , Inibidores de Lipoxigenase/farmacologia , Antagonistas Nicotínicos/farmacologia , Animais , Ácido Araquidônico/antagonistas & inibidores , Carcinoma/tratamento farmacológico , Proteínas Neurotóxicas de Elapídeos/farmacologia , Sinergismo Farmacológico , Flavanonas/farmacologia , Indometacina/farmacologia , Masoprocol/farmacologia , Camundongos , Receptores Nicotínicos
11.
Bioconjug Chem ; 30(4): 1098-1113, 2019 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-30817133

RESUMO

Enzyme-responsive liposomes release their cargo in response to pathologically increased levels of enzymes at the target site. We report herein an assembly of phospholipase A2-responsive liposomes based on colchicinoid lipid prodrugs incorporated into lipid bilayer of the nanosized vesicles. The liposomes were constructed to addresses two important issues: (i) the lipid prodrugs were designed to fit the structure of the enzyme binding site; and (ii) the concept of lateral pressure profile was used to design lipid prodrugs that introduce almost no distortions into the lipid bilayer packing, thus ensuring that corresponding liposomes are stable. The colchicinoid agents exhibit antiproliferative activity in subnanomolar range of concentrations.


Assuntos
Colchicina/química , Lipossomos , Fosfolipídeos/química , Pró-Fármacos/química , Fenômenos Biofísicos , Proliferação de Células/efeitos dos fármacos , Colchicina/farmacologia , Fluoresceínas/química , Humanos , Bicamadas Lipídicas , Fosfolipases A2/metabolismo
12.
J Biol Chem ; 290(39): 23616-30, 2015 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-26242733

RESUMO

Weak toxin from Naja kaouthia (WTX) belongs to the group of nonconventional "three-finger" snake neurotoxins. It irreversibly inhibits nicotinic acetylcholine receptors and allosterically interacts with muscarinic acetylcholine receptors (mAChRs). Using site-directed mutagenesis, NMR spectroscopy, and computer modeling, we investigated the recombinant mutant WTX analogue (rWTX) which, compared with the native toxin, has an additional N-terminal methionine residue. In comparison with the wild-type toxin, rWTX demonstrated an altered pharmacological profile, decreased binding of orthosteric antagonist N-methylscopolamine to human M1- and M2-mAChRs, and increased antagonist binding to M3-mAChR. Positively charged arginine residues located in the flexible loop II were found to be crucial for rWTX interactions with all types of mAChR. Computer modeling suggested that the rWTX loop II protrudes to the M1-mAChR allosteric ligand-binding site blocking the entrance to the orthosteric site. In contrast, toxin interacts with M3-mAChR by loop II without penetration into the allosteric site. Data obtained provide new structural insight into the target-specific allosteric regulation of mAChRs by "three-finger" snake neurotoxins.


Assuntos
Venenos Elapídicos/química , Neurotoxinas/metabolismo , Receptores Muscarínicos/metabolismo , Sequência de Aminoácidos , Animais , Elapidae , Dados de Sequência Molecular , Mutagênese Insercional , Neurotoxinas/química , Neurotoxinas/genética , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Conformação Proteica , Homologia de Sequência de Aminoácidos
13.
J Biol Chem ; 290(37): 22747-58, 2015 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-26221036

RESUMO

Ionotropic receptors of γ-aminobutyric acid (GABAAR) regulate neuronal inhibition and are targeted by benzodiazepines and general anesthetics. We show that a fluorescent derivative of α-cobratoxin (α-Ctx), belonging to the family of three-finger toxins from snake venoms, specifically stained the α1ß3γ2 receptor; and at 10 µm α-Ctx completely blocked GABA-induced currents in this receptor expressed in Xenopus oocytes (IC50 = 236 nm) and less potently inhibited α1ß2γ2 ≈ α2ß2γ2 > α5ß2γ2 > α2ß3γ2 and α1ß3δ GABAARs. The α1ß3γ2 receptor was also inhibited by some other three-finger toxins, long α-neurotoxin Ls III and nonconventional toxin WTX. α-Conotoxin ImI displayed inhibitory activity as well. Electrophysiology experiments showed mixed competitive and noncompetitive α-Ctx action. Fluorescent α-Ctx, however, could be displaced by muscimol indicating that most of the α-Ctx-binding sites overlap with the orthosteric sites at the ß/α subunit interface. Modeling and molecular dynamic studies indicated that α-Ctx or α-bungarotoxin seem to interact with GABAAR in a way similar to their interaction with the acetylcholine-binding protein or the ligand-binding domain of nicotinic receptors. This was supported by mutagenesis studies and experiments with α-conotoxin ImI and a chimeric Naja oxiana α-neurotoxin indicating that the major role in α-Ctx binding to GABAAR is played by the tip of its central loop II accommodating under loop C of the receptors.


Assuntos
Proteínas Neurotóxicas de Elapídeos , Conotoxinas , Simulação de Dinâmica Molecular , Receptores de GABA-A/química , Receptores de GABA-A/metabolismo , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Proteínas Neurotóxicas de Elapídeos/química , Proteínas Neurotóxicas de Elapídeos/farmacologia , Conotoxinas/química , Conotoxinas/farmacologia , Elapidae , Camundongos , Estrutura Secundária de Proteína , Receptores de GABA-A/genética
14.
Biochim Biophys Acta ; 1848(2): 463-8, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25450350

RESUMO

We describe the interaction of various phospholipases A2 (PLA2) from snake venoms of the family Viperidae (Macrovipera lebetina obtusa, Vipera ursinii renardi, Bothrops asper) with giant unilamellar vesicles (GUVs) composed of natural brain phospholipids mixture, visualized through fluorescence microscopy. The membrane fluorescent probes 8-anilino-1-naphthalenesulfonicacid (ANS), LAUDRAN and PRODAN were used to assess the state of the membrane and specifically mark the lipid packing and membrane fluidity. Our results have shown that the three PLA2s which contain either of aspartic acid, serine, or lysine residues at position 49 in the catalytic center, have different effects on the vesicles. The PLA2 with aspartic acid at this position causes the oval deformation of the vesicles, while serine and lysine-containing enzymes lead to an appreciable increase of fluorescence intensity in the vesicles membrane, wherein the shape and dimensions of GUVs have not changed, but in this case GUV aggregation occurs. LAURDAN and PRODAN detect the extent of water penetration into the bilayer surface. We calculated generalized polarization function (GP), showing that for all cases (D49 PLA2, S49 PLA2 and K49 PLA2) both LAUDRAN and PRODAN GP values decrease. A higher LAURDAN GP is indicative of low water penetration in the lipid bilayer in case of K49 PLA2 compared with D49 PLA2, whereas the PRODAN mainly gives information when lipid is in liquid crystalline phase.


Assuntos
Bicamadas Lipídicas/química , Fosfolipases A2/química , Proteínas de Répteis/química , Venenos de Serpentes/química , Lipossomas Unilamelares/química , 2-Naftilamina/análogos & derivados , Substituição de Aminoácidos , Naftalenossulfonato de Anilina , Animais , Ácido Aspártico/química , Transporte Biológico , Química Encefálica , Domínio Catalítico , Corantes Fluorescentes , Lauratos , Lisina/química , Masculino , Fluidez de Membrana , Fosfolipases A2/isolamento & purificação , Ratos , Proteínas de Répteis/isolamento & purificação , Serina/química , Venenos de Serpentes/enzimologia , Relação Estrutura-Atividade , Viperidae/metabolismo , Água/química
16.
Toxins (Basel) ; 16(6)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38922156

RESUMO

Cytotoxins (CTs) are three-finger membrane-active toxins present mainly in cobra venom. Our analysis of the available CT amino acid sequences, literature data on their membrane activity, and conformational equilibria in aqueous solution and detergent micelles allowed us to identify specific amino acid residues which interfere with CT incorporation into membranes. They include Pro9, Ser28, and Asn/Asp45 within the N-terminal, central, and C-terminal loops, respectively. There is a hierarchy in the effect of these residues on membrane activity: Pro9 > Ser28 > Asn/Asp45. Taking into account all the possible combinations of special residues, we propose to divide CTs into eight groups. Group 1 includes toxins containing all of the above residues. Their representatives demonstrated the lowest membrane activity. Group 8 combines CTs that lack these residues. For the toxins from this group, the greatest membrane activity was observed. We predict that when solely membrane activity determines the cytotoxic effects, the activity of CTs from a group with a higher number should exceed that of CTs from a group with a lower number. This classification is supported by the available data on the cytotoxicity and membranotropic properties of CTs. We hypothesize that the special amino acid residues within the loops of the CT molecule may indicate their involvement in the interaction with non-lipid targets.


Assuntos
Membrana Celular , Citotoxinas , Membrana Celular/efeitos dos fármacos , Animais , Citotoxinas/química , Citotoxinas/toxicidade , Venenos Elapídicos/química , Venenos Elapídicos/toxicidade , Aminoácidos/química , Sequência de Aminoácidos , Humanos
17.
Spectrochim Acta A Mol Biomol Spectrosc ; 314: 124239, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38579426

RESUMO

The knowledge of variations in the composition of venoms from different snakes is important from both theoretical and practical points of view, in particular, at developing and selecting an antivenom. Many studies on this topic are conducted with pooled venoms, while the existence and significance of variations in the composition of venoms between individual snakes of the same species are emphasized by many authors. It is important to study both inter- and intra-specific, including intra-population, venom variations, because intra-specific variations in the venom composition may affect the effectiveness of antivenoms as strongly as inter-specific. In this work, based on venom Raman spectroscopy with principal component analysis, we assessed the variations in venoms of individual snakes of the Vipera nikolskii species from two populations and compared these intra-specific variations with inter-specific variations (with regard to the other related species). We demonstrated intra-specific (inter- and intra-population) differences in venom compositions which are smaller than inter-specific variations. We also assessed the compositions of V. nikolskii venoms from two populations to explain inter-population differences. The method used is rapid and requires virtually no preparation of samples, used in extremely small quantities, allowing the venoms of individual snakes to be analyzed. In addition, the method is informative and capable of detecting fairly subtle differences in the composition of venoms.


Assuntos
Análise Espectral Raman , Peçonhas , Antivenenos
18.
Biochimie ; 216: 108-119, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37871826

RESUMO

Evidence to date indicates that activation of nicotinic acetylcholine receptors (nAChRs) can reduce cardiac injury from ischemia and subsequent reperfusion. The use of nAChR agonists in various animal models leads to a reduction in reperfusion injury. Earlier this effect was shown for the agonists of α7 nAChR subtype. In this work, we demonstrated the expression of mRNA encoding α4, α6 and ß2 nAChR subunits in the left ventricle of rat heart. In a rat model of myocardial ischemia, we studied the effect of α4ß2 nAChR agonists cytisine and varenicline, medicines used for the treatment of nicotine addiction, and found them to significantly reduce myocardium ischemia-reperfusion injury, varenicline manifesting a higher protection. Dihydro-ß-erythroidine, antagonist of α4ß2 nAChR, as well as methyllycaconitine, antagonist of α7 and α6ß2-containing nAChR, prevented protective effect of varenicline. This together with the presence of α4, α6 and ß2 subunit mRNA in the left ventricule of rat heart raises the possibility that the varenicline effect is mediated by α4ß2 as well as by α7 and/or α6ß2-containing receptors. Our results point to a new way for the use of cytisine and varenicline as cardioprotective agents.


Assuntos
Alcaloides , Isquemia Miocárdica , Receptores Nicotínicos , Traumatismo por Reperfusão , Ratos , Animais , Vareniclina/farmacologia , Antagonistas Nicotínicos/uso terapêutico , Agonistas Nicotínicos/farmacologia , Agonistas Nicotínicos/uso terapêutico , Alcaloides/farmacologia , Alcaloides/uso terapêutico , Receptores Nicotínicos/genética , Reperfusão , Isquemia Miocárdica/tratamento farmacológico , Traumatismo por Reperfusão/tratamento farmacológico , RNA Mensageiro/genética
19.
J Biol Chem ; 287(9): 6725-34, 2012 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-22223648

RESUMO

In Naja kaouthia cobra venom, we have earlier discovered a covalent dimeric form of α-cobratoxin (αCT-αCT) with two intermolecular disulfides, but we could not determine their positions. Here, we report the αCT-αCT crystal structure at 1.94 Å where intermolecular disulfides are identified between Cys(3) in one protomer and Cys(20) of the second, and vice versa. All remaining intramolecular disulfides, including the additional bridge between Cys(26) and Cys(30) in the central loops II, have the same positions as in monomeric α-cobratoxin. The three-finger fold is essentially preserved in each protomer, but the arrangement of the αCT-αCT dimer differs from those of noncovalent crystallographic dimers of three-finger toxins (TFT) or from the κ-bungarotoxin solution structure. Selective reduction of Cys(26)-Cys(30) in one protomer does not affect the activity against the α7 nicotinic acetylcholine receptor (nAChR), whereas its reduction in both protomers almost prevents α7 nAChR recognition. On the contrary, reduction of one or both Cys(26)-Cys(30) disulfides in αCT-αCT considerably potentiates inhibition of the α3ß2 nAChR by the toxin. The heteromeric dimer of α-cobratoxin and cytotoxin has an activity similar to that of αCT-αCT against the α7 nAChR and is more active against α3ß2 nAChRs. Our results demonstrate that at least one Cys(26)-Cys(30) disulfide in covalent TFT dimers, similar to the monomeric TFTs, is essential for their recognition by α7 nAChR, although it is less important for interaction of covalent TFT dimers with the α3ß2 nAChR.


Assuntos
Proteínas Neurotóxicas de Elapídeos/química , Dissulfetos/química , Receptores Nicotínicos/química , Alquilação , Sítios de Ligação , Proteínas Neurotóxicas de Elapídeos/metabolismo , Cristalografia por Raios X , Dimerização , Dissulfetos/metabolismo , Modelos Químicos , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Ensaio Radioligante , Receptores Nicotínicos/metabolismo , Receptor Nicotínico de Acetilcolina alfa7
20.
J Biol Chem ; 287(32): 27079-86, 2012 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-22613724

RESUMO

Azemiopsin, a novel polypeptide, was isolated from the Azemiops feae viper venom by combination of gel filtration and reverse-phase HPLC. Its amino acid sequence (DNWWPKPPHQGPRPPRPRPKP) was determined by means of Edman degradation and mass spectrometry. It consists of 21 residues and, unlike similar venom isolates, does not contain cysteine residues. According to circular dichroism measurements, this peptide adopts a ß-structure. Peptide synthesis was used to verify the determined sequence and to prepare peptide in sufficient amounts to study its biological activity. Azemiopsin efficiently competed with α-bungarotoxin for binding to Torpedo nicotinic acetylcholine receptor (nAChR) (IC(50) 0.18 ± 0.03 µm) and with lower efficiency to human α7 nAChR (IC(50) 22 ± 2 µm). It dose-dependently blocked acetylcholine-induced currents in Xenopus oocytes heterologously expressing human muscle-type nAChR and was more potent against the adult form (α1ß1εδ) than the fetal form (α1ß1γδ), EC(50) being 0.44 ± 0.1 µm and 1.56 ± 0.37 µm, respectively. The peptide had no effect on GABA(A) (α1ß3γ2 or α2ß3γ2) receptors at a concentration up to 100 µm or on 5-HT(3) receptors at a concentration up to 10 µm. Ala scanning showed that amino acid residues at positions 3-6, 8-11, and 13-14 are essential for binding to Torpedo nAChR. In biological activity azemiopsin resembles waglerin, a disulfide-containing peptide from the Tropidechis wagleri venom, shares with it a homologous C-terminal hexapeptide, but is the first natural toxin that blocks nAChRs and does not possess disulfide bridges.


Assuntos
Peptídeos/farmacologia , Receptores Nicotínicos/metabolismo , Venenos de Víboras/química , Sequência de Aminoácidos , Animais , Cromatografia Líquida de Alta Pressão , Dicroísmo Circular , Ligantes , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Dados de Sequência Molecular , Peptídeos/química , Peptídeos/metabolismo , Homologia de Sequência de Aminoácidos , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Venenos de Víboras/metabolismo , Venenos de Víboras/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA