Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Intervalo de ano de publicação
1.
Phys Rev Lett ; 128(25): 252501, 2022 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-35802446

RESUMO

The electric monopole (E0) transition strength ρ^{2} for the transition connecting the third 0^{+} level, a "superdeformed" band head, to the "spherical" 0^{+} ground state in doubly magic ^{40}Ca is determined via e^{+}e^{-} pair-conversion spectroscopy. The measured value ρ^{2}(E0;0_{3}^{+}→0_{1}^{+})=2.3(5)×10^{-3} is the smallest ρ^{2}(E0;0^{+}→0^{+}) found in A<50 nuclei. In contrast, the E0 transition strength to the ground state observed from the second 0^{+} state, a band head of "normal" deformation, is an order of magnitude larger ρ^{2}(E0;0_{2}^{+}→0_{1}^{+})=25.9(16)×10^{-3}, which shows significant mixing between these two states. Large-scale shell-model (LSSM) calculations are performed to understand the microscopic structure of the excited states and the configuration mixing between them; experimental ρ^{2} values in ^{40}Ca and neighboring isotopes are well reproduced by the LSSM calculations. The unusually small ρ^{2}(E0;0_{3}^{+}→0_{1}^{+}) value is due to destructive interference in the mixing of shape-coexisting structures, which are based on several different multiparticle-multihole excitations. This observation goes beyond the usual treatment of E0 strengths, where two-state shape mixing cannot result in destructive interference.

2.
Phys Rev Lett ; 126(25): 252501, 2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34241497

RESUMO

Direct proton-knockout reactions of ^{55}Sc at ∼220 MeV/nucleon were studied at the RIKEN Radioactive Isotope Beam Factory. Populated states of ^{54}Ca were investigated through γ-ray and invariant-mass spectroscopy. Level energies were calculated from the nuclear shell model employing a phenomenological internucleon interaction. Theoretical cross sections to states were calculated from distorted-wave impulse approximation estimates multiplied by the shell model spectroscopic factors, which describe the wave function overlap of the ^{55}Sc ground state with states in ^{54}Ca. Despite the calculations showing a significant amplitude of excited neutron configurations in the ground-state of ^{55}Sc, valence proton removals populated predominantly the ground state of ^{54}Ca. This counterintuitive result is attributed to pairing effects leading to a dominance of the ground-state spectroscopic factor. Owing to the ubiquity of the pairing interaction, this argument should be generally applicable to direct knockout reactions from odd-even to even-even nuclei.

3.
Phys Rev Lett ; 123(14): 142501, 2019 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-31702209

RESUMO

Exclusive cross sections and momentum distributions have been measured for quasifree one-neutron knockout reactions from a ^{54}Ca beam striking on a liquid hydrogen target at ∼200 MeV/u. A significantly larger cross section to the p_{3/2} state compared to the f_{5/2} state observed in the excitation of ^{53}Ca provides direct evidence for the nature of the N=34 shell closure. This finding corroborates the arising of a new shell closure in neutron-rich calcium isotopes. The distorted-wave impulse approximation reaction formalism with shell model calculations using the effective GXPF1Bs interaction and ab initio calculations concur our experimental findings. Obtained transverse and parallel momentum distributions demonstrate the sensitivity of quasifree one-neutron knockout in inverse kinematics on a thick liquid hydrogen target with the reaction vertex reconstructed to final state spin-parity assignments.

4.
Nature ; 502(7470): 207-10, 2013 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-24108051

RESUMO

Atomic nuclei are finite quantum systems composed of two distinct types of fermion--protons and neutrons. In a manner similar to that of electrons orbiting in an atom, protons and neutrons in a nucleus form shell structures. In the case of stable, naturally occurring nuclei, large energy gaps exist between shells that fill completely when the proton or neutron number is equal to 2, 8, 20, 28, 50, 82 or 126 (ref. 1). Away from stability, however, these so-called 'magic numbers' are known to evolve in systems with a large imbalance of protons and neutrons. Although some of the standard shell closures can disappear, new ones are known to appear. Studies aiming to identify and understand such behaviour are of major importance in the field of experimental and theoretical nuclear physics. Here we report a spectroscopic study of the neutron-rich nucleus (54)Ca (a bound system composed of 20 protons and 34 neutrons) using proton knockout reactions involving fast radioactive projectiles. The results highlight the doubly magic nature of (54)Ca and provide direct experimental evidence for the onset of a sizable subshell closure at neutron number 34 in isotopes far from stability.

5.
Phys Rev Lett ; 116(11): 112502, 2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-27035297

RESUMO

We present the nuclear matrix element for the neutrinoless double-beta decay of ^{48}Ca based on large-scale shell-model calculations including two harmonic oscillator shells (sd and pf shells). The excitation spectra of ^{48}Ca and ^{48}Ti, and the two-neutrino double-beta decay of ^{48}Ca are reproduced in good agreement to the experimental data. We find that the neutrinoless double-beta decay nuclear matrix element is enhanced by about 30% compared to pf-shell calculations. This reduces the decay lifetime by almost a factor of 2. The matrix-element increase is mostly due to pairing correlations associated with cross-shell sd-pf excitations. We also investigate possible implications for heavier neutrinoless double-beta decay candidates.

6.
Phys Rev Lett ; 117(17): 179902, 2016 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-27824452

RESUMO

This corrects the article DOI: 10.1103/PhysRevLett.116.112502.

7.
Phys Rev Lett ; 114(25): 252501, 2015 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-26197123

RESUMO

The low-lying structure of the neutron-rich nucleus (50)Ar has been investigated at the Radioactive Isotope Beam Factory using in-beam γ-ray spectroscopy with (9)Be((54)Ca,(50)Ar+γ)X, (9)Be((55)Sc,(50)Ar+γ)X, and (9)Be((56)Ti,(50)Ar+γ)X multinucleon removal reactions at ∼220 MeV/u. A γ-ray peak at 1178(18) keV is reported and assigned as the transition from the first 2(+) state to the 0(+) ground state. A weaker, tentative line at 1582(38) keV is suggested as the 4(1)(+)→2(1)(+) transition. The experimental results are compared to large-scale shell-model calculations performed in the sdpf model space using the SDPF-MU effective interaction with modifications based on recent experimental data for exotic calcium and potassium isotopes. The modified Hamiltonian provides a satisfactory description of the new experimental results for (50)Ar and, more generally, reproduces the energy systematics of low-lying states in neutron-rich Ar isotopes rather well. The shell-model calculations indicate that the N=32 subshell gap in (50)Ar is similar in magnitude to those in (52)Ca and (54)Ti and, notably, predict an N=34 subshell closure in (52)Ar that is larger than the one recently reported in (54)Ca.

8.
Phys Rev Lett ; 112(24): 242501, 2014 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-24996084

RESUMO

Cross sections of 1n-removal reactions from the neutron-rich nucleus (37)Mg on C and Pb targets and the parallel momentum distributions of the (37)Mg residues from the C target have been measured at 240 MeV/nucleon. A combined analysis of these distinct nuclear- and Coulomb-dominated reaction data shows that the (37)Mg ground state has a small 1n separation energy of 0.22(-0.09)(+0.12) MeV and an appreciable p-wave neutron single-particle strength. These results confirm that (37)Mg lies near the edge of the "island of inversion" and has a sizable p-wave neutron halo component, the heaviest such system identified to date.

9.
Phys Rev Lett ; 112(14): 142501, 2014 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-24765946

RESUMO

The halo structure of 31Ne is studied using 1n-removal reactions on C and Pb targets at 230 MeV/nucleon. A combined analysis of the cross sections of these nuclear and Coulomb dominated reactions that feed directly the 30Ne ground-state reveals 31Ne to have a small neutron separation energy, 0.15(-0.10)(+0.16) MeV, and spin-parity 3/2-. Consistency of the data with reaction and large-scale shell-model calculations identifies 31Ne as deformed and having a significant p-wave halo component, suggesting that halos are more frequent occurrences at the neutron drip line.

10.
Phys Rev Lett ; 110(17): 172503, 2013 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-23679713

RESUMO

The ground-state spins and magnetic moments of (49,51)K have been measured using bunched-beam high-resolution collinear laser spectroscopy at ISOLDE CERN. For 49K a ground-state spin I = 1/2 was firmly established. The observed hyperfine structure of 51K requires a spin I > 1/2 and strongly suggests I = 3/2. From its magnetic moment µ(51K) = +0.5129(22)µ(N) a spin-parity I(π) = 3/2+ with a dominant π1d(3/2)(-1) hole configuration was deduced. This establishes for the first time the reinversion of the single-particle levels and illustrates the prominent role of the residual monopole interaction for single-particle levels and shell evolution.

11.
Phys Rev Lett ; 110(12): 122503, 2013 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-25166799

RESUMO

Single nucleon pickup reactions were performed with a 18.1 MeV/nucleon (14)O beam on a deuterium target. Within the coupled reaction channel framework, the measured cross sections were compared to theoretical predictions and analyzed using both phenomenological and microscopic overlap functions. The missing strength due to correlations does not show significant dependence on the nucleon separation energy asymmetry over a wide range of 37 MeV, in contrast with nucleon removal data analyzed within the sudden-eikonal formalism.

12.
Nat Commun ; 13(1): 2234, 2022 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-35477704

RESUMO

A long-standing crucial question with atomic nuclei is whether or not α clustering occurs there. An α particle (helium-4 nucleus) comprises two protons and two neutrons, and may be the building block of some nuclei. This is a very beautiful and fascinating idea, and is indeed plausible because the α particle is particularly stable with a large binding energy. However, direct experimental evidence has never been provided. Here, we show whether and how α(-like) objects emerge in atomic nuclei, by means of state-of-the-art quantum many-body simulations formulated from first principles, utilizing supercomputers including K/Fugaku. The obtained physical quantities exhibit agreement with experimental data. The appearance and variation of the α clustering are shown by utilizing density profiles for the nuclei beryllium-8, -10 and carbon-12. With additional insight by statistical learning, an unexpected crossover picture is presented for the Hoyle state, a critical gateway to the birth of life.

13.
Phys Rev Lett ; 103(26): 262501, 2009 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-20366309

RESUMO

The cross sections for single-neutron removal from the very neutron-rich nucleus 31Ne on Pb and C targets have been measured at 230 MeV/nucleon using the RIBF facility at RIKEN. The deduced large Coulomb breakup cross section of 540(70) mb is indicative of a soft E1 excitation. Comparison with direct-breakup model calculations suggests that the valence neutron of 31Ne occupies a low-l orbital (most probably 2p(3/2)) with a small separation energy (S(n) approximately < 0.8 MeV), instead of being predominantly in the 1f(7/2) orbital as expected from the conventional shell ordering. These findings suggest that 31Ne is the heaviest halo system known.

14.
Phys Rev Lett ; 102(15): 152501, 2009 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-19518623

RESUMO

The first measurement of the momentum distribution for one-neutron removal from (24)O at 920A MeV performed at GSI, Darmstadt is reported. The observed distribution has a width (FWHM) of 99 +/- 4 MeV/c in the projectile rest frame and a one-neutron removal cross section of 63 +/- 7 mb. The results are well explained with a nearly pure 2s_{1/2} neutron spectroscopic factor of 1.74 +/- 0.19 within the eikonal model. This large s-wave probability shows a spherical shell closure thereby confirming earlier suggestions that (24)O is a new doubly magic nucleus.

15.
Phys Rev Lett ; 101(14): 142504, 2008 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-18851524

RESUMO

The beta decay of 33Mg (N=21) presented in this Letter reveals intruder configurations in both the parent and the daughter nucleus. The lowest excited states in the N=20 daughter nucleus, 33Al, are found to have nearly 2p-2h intruder configuration, thus extending the "island of inversion" beyond Mg. The allowed direct beta-decay branch to the 5/2{+} ground state of the daughter nucleus 33Al implies positive parity for the ground state of the parent 33Mg, contrary to an earlier suggestion of negative parity from a g-factor measurement. An admixture of 1p-1h and 3p-3h configurations is proposed for the ground state of 33Mg to explain all of the experimental observables.

16.
Phys Rev Lett ; 99(7): 072502, 2007 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-17930889

RESUMO

We report on the first spectroscopy study of the very neutron-rich nucleus (36)(12)Mg24 using the direct two-proton knockout reaction 9Be(38Si,36Mg+gamma)X at 83 MeV/nucleon. The energy of the first excited 2+ state of 36Mg, E(2+(1)=660(6) keV, was measured. The magnitude of the partial cross sections to the ground state and the 2+(1) state is indicative of strong intruder admixtures in the lowest-lying states as suggested by Monte Carlo shell-model calculations.

17.
Phys Rev Lett ; 94(2): 022501, 2005 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-15698167

RESUMO

Unambiguous values of the spin and magnetic moment of 31Mg are obtained by combining the results of a hyperfine-structure measurement and a beta-NMR measurement, both performed with an optically polarized ion beam. With a measured nuclear g factor and spin I=1/2, the magnetic moment mu(31Mg)=-0.88355(15)mu(N) is deduced. A revised level scheme of 31Mg (Z=12, N=19) with ground state spin/parity I(pi)=1/2(+) is presented, revealing the coexistence of 1p-1h and 2p-2h intruder states below 500 keV. Advanced shell-model calculations and the Nilsson model suggest that the I(pi)=1/2(+) ground state is a strongly prolate deformed intruder state. This result plays a key role for the understanding of nuclear structure changes due to the disappearance of the N=20 shell gap in neutron-rich nuclei.

18.
Phys Rev Lett ; 94(16): 162501, 2005 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-15904217

RESUMO

The low-energy level structure of the exotic Na isotopes (28,29)Na has been investigated through beta-delayed gamma spectroscopy. The N=20 isotones for Z=10-12 are considered to belong to the "island of inversion" where intruder configurations dominate the ground state wave function. However, it is an open question as to where and how the transition from normal to intruder dominated configurations happens in an isotopic chain. The present work, which presents the first detailed spectroscopy of (28,29)Na, clearly demonstrates that such a transition in the Na isotopes occurs between 28Na (N=17) and 29Na (N=18), supporting the smaller N=20 shell gap in neutron-rich sd shell nuclei. The evidence for inverted shell structure is found in beta-decay branching ratios, intruder dominated spectroscopy of low-lying states, and shell model analysis.

19.
Phys Rev Lett ; 87(8): 082502, 2001 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-11497939

RESUMO

The magic numbers in exotic nuclei are discussed, and their novel origin is shown to be the spin-isospin dependent part of the nucleon-nucleon interaction in nuclei. The importance and robustness of this mechanism is shown in terms of meson exchange, G-matrix, and QCD theories. In neutron-rich exotic nuclei, magic numbers such as N = 8, 20, etc. can disappear, while N = 6, 16, etc. arise, affecting the structure of the lightest exotic nuclei to nucleosynthesis of heavy elements.

20.
Kango ; 25(2): 118-9, 1973 Feb.
Artigo em Japonês | MEDLINE | ID: mdl-4487590
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA