Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Intervalo de ano de publicação
1.
Proc Biol Sci ; 289(1978): 20220457, 2022 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-35858066

RESUMO

The structure of forest mammal communities appears surprisingly consistent across the continental tropics, presumably due to convergent evolution in similar environments. Whether such consistency extends to mammal occupancy, despite variation in species characteristics and context, remains unclear. Here we ask whether we can predict occupancy patterns and, if so, whether these relationships are consistent across biogeographic regions. Specifically, we assessed how mammal feeding guild, body mass and ecological specialization relate to occupancy in protected forests across the tropics. We used standardized camera-trap data (1002 camera-trap locations and 2-10 years of data) and a hierarchical Bayesian occupancy model. We found that occupancy varied by regions, and certain species characteristics explained much of this variation. Herbivores consistently had the highest occupancy. However, only in the Neotropics did we detect a significant effect of body mass on occupancy: large mammals had lowest occupancy. Importantly, habitat specialists generally had higher occupancy than generalists, though this was reversed in the Indo-Malayan sites. We conclude that habitat specialization is key for understanding variation in mammal occupancy across regions, and that habitat specialists often benefit more from protected areas, than do generalists. The contrasting examples seen in the Indo-Malayan region probably reflect distinct anthropogenic pressures.


Assuntos
Ecossistema , Florestas , Animais , Teorema de Bayes , Biodiversidade , Conservação dos Recursos Naturais , Herbivoria , Mamíferos
2.
Glob Chang Biol ; 28(24): 7205-7216, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36172946

RESUMO

The spatial aggregation of species pairs often increases with the ecological similarity of the species involved. However, the way in which environmental conditions and anthropogenic activity affect the relationship between spatial aggregation and ecological similarity remains unknown despite the potential for spatial associations to affect species interactions, ecosystem function, and extinction risk. Given that human disturbance has been shown to both increase and decrease spatial associations among species pairs, ecological similarity may have a role in mediating these patterns. Here, we test the influences of habitat diversity, primary productivity, human population density, and species' ecological similarity based on functional traits (i.e., functional trait similarity) on spatial associations among tropical forest mammals. Large mammals are highly sensitive to anthropogenic change and therefore susceptible to changes in interspecific spatial associations. Using two-species occupancy models and camera trap data, we quantified the spatial overlap of 1216 species pairs from 13 tropical forest protected areas around the world. We found that the association between ecological similarity and interspecific species associations depended on surrounding human density. Specifically, aggregation of ecologically similar species was more than an order of magnitude stronger in landscapes with the highest human density compared to those with the lowest human density, even though all populations occurred within protected areas. Human-induced changes in interspecific spatial associations have been shown to alter top-down control by predators, increase disease transmission and increase local extinction rates. Our results indicate that anthropogenic effects on the distribution of wildlife within protected areas are already occurring and that impacts on species interactions, ecosystem functions, and extinction risk warrant further investigation.


Assuntos
Biodiversidade , Ecossistema , Animais , Humanos , Florestas , Mamíferos , Densidade Demográfica
3.
Ecol Appl ; 31(7): e02397, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34212448

RESUMO

Poaching is a pervasive threat to wildlife, yet quantifying the direct effect of poaching on wildlife is rarely possible because both wildlife and threat data are infrequently collected concurrently. In this study, we used poaching data collected through the Management Information System (MIST) and wildlife camera trap data collected by the Tropical Ecology Assessment and Monitoring (TEAM) network from 2014 to 2017 in Volcanoes National Park, Rwanda. We implemented co-occurrence multi-season occupancy models that accounted for imperfect detection to investigate the effect of poaching on initial occupancy, colonization, and extinction of five mammal species. Specifically, we focused on two species of conservation concern (mountain gorilla [Gorilla beringei beringei] and golden monkey [Cercopithecus mitis kandti]), and three species targeted by poachers (black-fronted duiker [Cephalophus nigrifrons], bushbuck [Tragelaphus scriptus], and African buffalo [Syncerus caffer]). We found that the probability of local extinction was highest in sites with poaching activity for golden monkey and bushbuck. In addition, the probability of initial occupancy for golden monkey was highest in sites without poaching activity. We only found weak evidence of effects of poaching on parameters governing the occupancy dynamics of the other species. All species showed evidence of poaching presence affecting the probability of detection of the wildlife species. This is the first study to our knowledge to combine direct threat observations from ranger-based monitoring data with camera trap wildlife observations to quantify the effect of poaching on wildlife. Given the widespread collection of ranger-based monitoring and camera trap data, our approach is broadly applicable to numerous protected areas and has the potential to significantly improve conservation management. Specifically, the relationship between poaching activity and wildlife population dynamics can be combined with information on the relationship between ranger patrols and poaching activity to develop models useful for making wise decisions about ranger patrol deployment.


Assuntos
Animais Selvagens , Gorilla gorilla , Agricultura , Animais , Conservação dos Recursos Naturais , Mamíferos , Parques Recreativos
4.
Nat Commun ; 15(1): 5554, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38987543

RESUMO

Thermophilization is the directional change in species community composition towards greater relative abundances of species associated with warmer environments. This process is well-documented in temperate and Neotropical plant communities, but it is uncertain whether this phenomenon occurs elsewhere in the tropics. Here we extend the search for thermophilization to equatorial Africa, where lower tree diversity compared to other tropical forest regions and different biogeographic history could affect community responses to climate change. Using re-census data from 17 forest plots in three mountain regions of Africa, we find a consistent pattern of thermophilization in tree communities. Mean rates of thermophilization were +0.0086 °C·y-1 in the Kigezi Highlands (Uganda), +0.0032 °C·y-1 in the Virunga Mountains (Rwanda-Uganda-Democratic Republic of the Congo) and +0.0023 °C·y-1 in the Udzungwa Mountains (Tanzania). Distinct from other forests, both recruitment and mortality were important drivers of thermophilzation in the African plots. The forests studied currently act as a carbon sink, but the consequences of further thermophilization are unclear.


Assuntos
Mudança Climática , Florestas , Árvores , Clima Tropical , Biodiversidade , Temperatura , Uganda , Tanzânia , Ruanda , República Democrática do Congo , Sequestro de Carbono
5.
Nat Ecol Evol ; 7(7): 1092-1103, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37365343

RESUMO

Protected areas (PAs) play a vital role in wildlife conservation. Nonetheless there is concern and uncertainty regarding how and at what spatial scales anthropogenic stressors influence the occurrence dynamics of wildlife populations inside PAs. Here we assessed how anthropogenic stressors influence occurrence dynamics of 159 mammal species in 16 tropical PAs from three biogeographic regions. We quantified these relationships for species groups (habitat specialists and generalists) and individual species. We used long-term camera-trap data (1,002 sites) and fitted Bayesian dynamic multispecies occupancy models to estimate local colonization (the probability that a previously empty site is colonized) and local survival (the probability that an occupied site remains occupied). Multiple covariates at both the local scale and landscape scale influenced mammal occurrence dynamics, although responses differed among species groups. Colonization by specialists increased with local-scale forest cover when landscape-scale fragmentation was low. Survival probability of generalists was higher near the edge than in the core of the PA when landscape-scale human population density was low but the opposite occurred when population density was high. We conclude that mammal occurrence dynamics are impacted by anthropogenic stressors acting at multiple scales including outside the PA itself.


Assuntos
Biodiversidade , Conservação dos Recursos Naturais , Humanos , Animais , Teorema de Bayes , Florestas , Mamíferos , Animais Selvagens
6.
Nat Commun ; 13(1): 7102, 2022 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-36402775

RESUMO

An animal's daily use of time (their "diel activity") reflects their adaptations, requirements, and interactions, yet we know little about the underlying processes governing diel activity within and among communities. Here we examine whether community-level activity patterns differ among biogeographic regions, and explore the roles of top-down versus bottom-up processes and thermoregulatory constraints. Using data from systematic camera-trap networks in 16 protected forests across the tropics, we examine the relationships of mammals' diel activity to body mass and trophic guild. Also, we assess the activity relationships within and among guilds. Apart from Neotropical insectivores, guilds exhibited consistent cross-regional activity in relation to body mass. Results indicate that thermoregulation constrains herbivore and insectivore activity (e.g., larger Afrotropical herbivores are ~7 times more likely to be nocturnal than smaller herbivores), while bottom-up processes constrain the activity of carnivores in relation to herbivores, and top-down processes constrain the activity of small omnivores and insectivores in relation to large carnivores' activity. Overall, diel activity of tropical mammal communities appears shaped by similar processes and constraints among regions reflecting body mass and trophic guilds.


Assuntos
Carnívoros , Florestas , Animais , Herbivoria , Estado Nutricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA