Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 541(7637): 421-424, 2017 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-28077870

RESUMO

Oligomerization of membrane proteins in response to lipid binding has a critical role in many cell-signalling pathways but is often difficult to define or predict. Here we report the development of a mass spectrometry platform to determine simultaneously the presence of interfacial lipids and oligomeric stability and to uncover how lipids act as key regulators of membrane-protein association. Evaluation of oligomeric strength for a dataset of 125 α-helical oligomeric membrane proteins reveals an absence of interfacial lipids in the mass spectra of 12 membrane proteins with high oligomeric stability. For the bacterial homologue of the eukaryotic biogenic transporters (LeuT, one of the proteins with the lowest oligomeric stability), we found a precise cohort of lipids within the dimer interface. Delipidation, mutation of lipid-binding sites or expression in cardiolipin-deficient Escherichia coli abrogated dimer formation. Molecular dynamics simulation revealed that cardiolipin acts as a bidentate ligand, bridging across subunits. Subsequently, we show that for the Vibrio splendidus sugar transporter SemiSWEET, another protein with low oligomeric stability, cardiolipin shifts the equilibrium from monomer to functional dimer. We hypothesized that lipids are essential for dimerization of the Na+/H+ antiporter NhaA from E. coli, which has the lowest oligomeric strength, but not for the substantially more stable homologous Thermus thermophilus protein NapA. We found that lipid binding is obligatory for dimerization of NhaA, whereas NapA has adapted to form an interface that is stable without lipids. Overall, by correlating interfacial strength with the presence of interfacial lipids, we provide a rationale for understanding the role of lipids in both transient and stable interactions within a range of α-helical membrane proteins, including G-protein-coupled receptors.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Lipídeos/química , Lipídeos/farmacologia , Espectrometria de Massas/métodos , Proteínas de Membrana/química , Proteínas de Membrana/metabolismo , Multimerização Proteica/efeitos dos fármacos , Sítios de Ligação/genética , Cardiolipinas/química , Cardiolipinas/metabolismo , Cardiolipinas/farmacologia , Membrana Celular/química , Membrana Celular/metabolismo , Escherichia coli/química , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Ligantes , Modelos Moleculares , Simulação de Dinâmica Molecular , Moritella/química , Estabilidade Proteica/efeitos dos fármacos , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo , Trocadores de Sódio-Hidrogênio/química , Trocadores de Sódio-Hidrogênio/metabolismo , Termodinâmica , Thermus thermophilus/química
2.
Anal Chem ; 92(18): 12297-12303, 2020 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-32660238

RESUMO

In structural biology, collision cross sections (CCSs) from ion mobility mass spectrometry (IM-MS) measurements are routinely compared to computationally or experimentally derived protein structures. Here, we investigate whether CCS data can inform about the shape of a protein in the absence of specific reference structures. Analysis of the proteins in the CCS database shows that protein complexes with low apparent densities are structurally more diverse than those with a high apparent density. Although assigning protein shapes purely on CCS data is not possible, we find that we can distinguish oblate- and prolate-shaped protein complexes by using the CCS, molecular weight, and oligomeric states to mine the Protein Data Bank (PDB) for potentially similar protein structures. Furthermore, comparing the CCS of a ferritin cage to the solution structures in the PDB reveals significant deviations caused by structural collapse in the gas phase. We then apply the strategy to an integral membrane protein by comparing the shapes of a prokaryotic and a eukaryotic sodium/proton antiporter homologue. We conclude that mining the PDB with IM-MS data is a time-effective way to derive low-resolution structural models.


Assuntos
Bases de Dados de Proteínas , Ferritinas/análise , Archaeoglobus fulgidus/química , Espectrometria de Mobilidade Iônica
3.
Proc Natl Acad Sci U S A ; 114(7): E1101-E1110, 2017 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-28154142

RESUMO

Sodium/proton exchangers of the SLC9 family mediate the transport of protons in exchange for sodium to help regulate intracellular pH, sodium levels, and cell volume. In electrogenic Na+/H+ antiporters, it has been assumed that two ion-binding aspartate residues transport the two protons that are later exchanged for one sodium ion. However, here we show that we can switch the antiport activity of the bacterial Na+/H+ antiporter NapA from being electrogenic to electroneutral by the mutation of a single lysine residue (K305). Electroneutral lysine mutants show similar ion affinities when driven by [Formula: see text]pH, but no longer respond to either an electrochemical potential ([Formula: see text]) or could generate one when driven by ion gradients. We further show that the exchange activity of the human Na+/H+ exchanger NHA2 (SLC9B2) is electroneutral, despite harboring the two conserved aspartic acid residues found in NapA and other bacterial homologues. Consistently, the equivalent residue to K305 in human NHA2 has been replaced with arginine, which is a mutation that makes NapA electroneutral. We conclude that a transmembrane embedded lysine residue is essential for electrogenic transport in Na+/H+ antiporters.


Assuntos
Antiporters/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Thermus thermophilus/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Antiporters/química , Ácido Aspártico/química , Bactérias/metabolismo , Sítios de Ligação , Cisteína/química , Eletroquímica , Humanos , Concentração de Íons de Hidrogênio , Transporte de Íons , Lisina/química , Modelos Moleculares , Mutagênese Sítio-Dirigida , Conformação Proteica , Prótons , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Sódio/metabolismo , Especificidade da Espécie
4.
Nature ; 501(7468): 573-7, 2013 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-23995679

RESUMO

Sodium/proton (Na(+)/H(+)) antiporters, located at the plasma membrane in every cell, are vital for cell homeostasis. In humans, their dysfunction has been linked to diseases, such as hypertension, heart failure and epilepsy, and they are well-established drug targets. The best understood model system for Na(+)/H(+) antiport is NhaA from Escherichia coli, for which both electron microscopy and crystal structures are available. NhaA is made up of two distinct domains: a core domain and a dimerization domain. In the NhaA crystal structure a cavity is located between the two domains, providing access to the ion-binding site from the inward-facing surface of the protein. Like many Na(+)/H(+) antiporters, the activity of NhaA is regulated by pH, only becoming active above pH 6.5, at which point a conformational change is thought to occur. The only reported NhaA crystal structure so far is of the low pH inactivated form. Here we describe the active-state structure of a Na(+)/H(+) antiporter, NapA from Thermus thermophilus, at 3 Å resolution, solved from crystals grown at pH 7.8. In the NapA structure, the core and dimerization domains are in different positions to those seen in NhaA, and a negatively charged cavity has now opened to the outside. The extracellular cavity allows access to a strictly conserved aspartate residue thought to coordinate ion binding directly, a role supported here by molecular dynamics simulations. To alternate access to this ion-binding site, however, requires a surprisingly large rotation of the core domain, some 20° against the dimerization interface. We conclude that despite their fast transport rates of up to 1,500 ions per second, Na(+)/H(+) antiporters operate by a two-domain rocking bundle model, revealing themes relevant to secondary-active transporters in general.


Assuntos
Trocadores de Sódio-Hidrogênio/química , Thermus thermophilus/química , Ácido Aspártico/química , Ácido Aspártico/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Proteínas de Escherichia coli/química , Concentração de Íons de Hidrogênio , Modelos Moleculares , Simulação de Dinâmica Molecular , Multimerização Proteica , Estrutura Terciária de Proteína , Prótons , Sódio/metabolismo , Trocadores de Sódio-Hidrogênio/genética , Trocadores de Sódio-Hidrogênio/metabolismo , Eletricidade Estática , Thermus thermophilus/genética
5.
Biochem J ; 454(3): 491-9, 2013 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-23819815

RESUMO

Water transport across cellular membranes is mediated by a family of membrane proteins known as AQPs (aquaporins). AQPs were first discovered on the basis of their ability to be inhibited by mercurial compounds, an experiment which has followed the AQP field ever since. Although mercury inhibition is most common, many AQPs are mercury insensitive. In plants, regulation of AQPs is important in order to cope with environmental changes. Plant plasma membrane AQPs are known to be gated by phosphorylation, pH and Ca²âº. We have previously solved the structure of the spinach AQP SoPIP2;1 (Spinacia oleracea plasma membrane intrinsic protein 2;1) in closed and open conformations and proposed a mechanism for how this gating can be achieved. To study the effect of mercury on SoPIP2;1 we solved the structure of the SoPIP2;1-mercury complex and characterized the water transport ability using proteoliposomes. The structure revealed mercury binding to three out of four cysteine residues. In contrast to what is normally seen for AQPs, mercury increased the water transport rate of SoPIP2;1, an effect which could not be attributed to any of the cysteine residues. This indicates that other factors might influence the effect of mercury on SoPIP2;1, one of which could be the properties of the lipid bilayer.


Assuntos
Aquaporinas/química , Cisteína/química , Mercúrio/química , Proteínas de Plantas/química , Água/química , Substituição de Aminoácidos , Aquaporinas/genética , Sítios de Ligação , Permeabilidade da Membrana Celular , Cristalografia por Raios X , Cisteína/genética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Permeabilidade , Proteínas de Plantas/genética , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Spinacia oleracea
6.
Nat Commun ; 13(1): 6383, 2022 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-36289233

RESUMO

The strict exchange of protons for sodium ions across cell membranes by Na+/H+ exchangers is a fundamental mechanism for cell homeostasis. At active pH, Na+/H+ exchange can be modelled as competition between H+ and Na+ to an ion-binding site, harbouring either one or two aspartic-acid residues. Nevertheless, extensive analysis on the model Na+/H+ antiporter NhaA from Escherichia coli, has shown that residues on the cytoplasmic surface, termed the pH sensor, shifts the pH at which NhaA becomes active. It was unclear how to incorporate the pH senor model into an alternating-access mechanism based on the NhaA structure at inactive pH 4. Here, we report the crystal structure of NhaA at active pH 6.5, and to an improved resolution of 2.2 Å. We show that at pH 6.5, residues in the pH sensor rearrange to form new salt-bridge interactions involving key histidine residues that widen the inward-facing cavity. What we now refer to as a pH gate, triggers a conformational change that enables water and Na+ to access the ion-binding site, as supported by molecular dynamics (MD) simulations. Our work highlights a unique, channel-like switch prior to substrate translocation in a secondary-active transporter.


Assuntos
Proteínas de Escherichia coli , Proteínas de Escherichia coli/metabolismo , Prótons , Antiporters/metabolismo , Histidina/metabolismo , Concentração de Íons de Hidrogênio , Escherichia coli/metabolismo , Trocadores de Sódio-Hidrogênio/metabolismo , Íons/metabolismo , Sódio/metabolismo , Água/metabolismo
7.
Nat Commun ; 8: 13993, 2017 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-28071645

RESUMO

Na+/H+ antiporters are found in all kingdoms of life and exhibit catalysis rates that are among the fastest of all known secondary-active transporters. Here we combine ion mobility mass spectrometry and molecular dynamics simulations to study the conformational stability and lipid-binding properties of the Na+/H+ exchanger NapA from Thermus thermophilus and compare this to the prototypical antiporter NhaA from Escherichia coli and the human homologue NHA2. We find that NapA and NHA2, but not NhaA, form stable dimers and do not selectively retain membrane lipids. By comparing wild-type NapA with engineered variants, we show that the unfolding of the protein in the gas phase involves the disruption of inter-domain contacts. Lipids around the domain interface protect the native fold in the gas phase by mediating contacts between the mobile protein segments. We speculate that elevator-type antiporters such as NapA, and likely NHA2, use a subset of annular lipids as structural support to facilitate large-scale conformational changes within the membrane.


Assuntos
Lipídeos/química , Espectrometria de Massas/métodos , Trocadores de Sódio-Hidrogênio/química , Trocadores de Sódio-Hidrogênio/metabolismo , Antiporters/química , Antiporters/genética , Antiporters/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Metabolismo dos Lipídeos , Simulação de Dinâmica Molecular , Domínios Proteicos , Estabilidade Proteica , Desdobramento de Proteína , Trocadores de Sódio-Hidrogênio/genética , Thermus thermophilus/química
8.
Nat Struct Mol Biol ; 23(3): 248-55, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26828964

RESUMO

To fully understand the transport mechanism of Na(+)/H(+) exchangers, it is necessary to clearly establish the global rearrangements required to facilitate ion translocation. Currently, two different transport models have been proposed. Some reports have suggested that structural isomerization is achieved through large elevator-like rearrangements similar to those seen in the structurally unrelated sodium-coupled glutamate-transporter homolog GltPh. Others have proposed that only small domain movements are required for ion exchange, and a conventional rocking-bundle model has been proposed instead. Here, to resolve these differences, we report atomic-resolution structures of the same Na(+)/H(+) antiporter (NapA from Thermus thermophilus) in both outward- and inward-facing conformations. These data combined with cross-linking, molecular dynamics simulations and isothermal calorimetry suggest that Na(+)/H(+) antiporters provide alternating access to the ion-binding site by using elevator-like structural transitions.


Assuntos
Trocadores de Sódio-Hidrogênio/química , Trocadores de Sódio-Hidrogênio/metabolismo , Thermus thermophilus/enzimologia , Calorimetria , Cristalografia por Raios X , Modelos Moleculares , Simulação de Dinâmica Molecular , Conformação Proteica
9.
Chem Commun (Camb) ; 51(85): 15582-4, 2015 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-26356172

RESUMO

Mass spectrometry of intact membrane protein complexes requires removal of the detergent micelle by collisional activation. We demonstrate that the necessary energy can be obtained by adjusting the degree of collisional cooling in the ion source. This enables us to extend the energy regime for dissociation of membrane protein complexes.


Assuntos
Proteínas de Membrana/química , Termodinâmica , Gases/química , Espectrometria de Massas , Desdobramento de Proteína
10.
J Mol Biol ; 426(7): 1498-511, 2014 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-24361331

RESUMO

The phage shock protein (Psp) systems found in bacteria, archaea and higher plants respond to extracytoplasmic stresses that damage the cytoplasmic membrane and enable cells to repair their membranes. The conserved membrane-associated effector protein PspA has four α-helical domains (HD1-HD4) and helps to repair the membrane as a high-order oligomer. In enterobacteria, under non-stress conditions, PspA as a low-order assembly directly inhibits its cognate transcription activator PspF. Here we show that N-terminal amphipathic helices ahA and ahB in PspA HD1 are functional determinants involved in negative gene control and stress signal perception and its transduction via interactions with the PspBC membrane stress sensors and the inner membrane (IM). The amphipathic helices enable PspA to switch from a low-order gene regulator into an IM-bound high-order effector complex under membrane stress. Conserved residue proline 25 is involved in sequential use of the amphipathic helices and ahA-IM interaction. Single molecule imaging of eGFP-PspA and its amphipathic helices variants in live Escherichia coli cells show distinct spatial and temporal organisations of PspA corresponding to its negative control and effector functions. These findings inform studies on the role of the Psp system in persister cell formation and cell envelope protection in bacterial pathogens and provide a basis for exploring the specialised roles of PspA homologues such as YjfJ, LiaH and Vipp1.


Assuntos
Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Regulação Bacteriana da Expressão Gênica , Estrutura Secundária de Proteína
11.
J Gen Physiol ; 144(6): 529-44, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25422503

RESUMO

Sodium-proton antiporters rapidly exchange protons and sodium ions across the membrane to regulate intracellular pH, cell volume, and sodium concentration. How ion binding and release is coupled to the conformational changes associated with transport is not clear. Here, we report a crystal form of the prototypical sodium-proton antiporter NhaA from Escherichia coli in which the protein is seen as a dimer. In this new structure, we observe a salt bridge between an essential aspartic acid (Asp163) and a conserved lysine (Lys300). An equivalent salt bridge is present in the homologous transporter NapA, but not in the only other known crystal structure of NhaA, which provides the foundation of most existing structural models of electrogenic sodium-proton antiport. Molecular dynamics simulations show that the stability of the salt bridge is weakened by sodium ions binding to Asp164 and the neighboring Asp163. This suggests that the transport mechanism involves Asp163 switching between forming a salt bridge with Lys300 and interacting with the sodium ion. pKa calculations suggest that Asp163 is highly unlikely to be protonated when involved in the salt bridge. As it has been previously suggested that Asp163 is one of the two residues through which proton transport occurs, these results have clear implications to the current mechanistic models of sodium-proton antiport in NhaA.


Assuntos
Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/ultraestrutura , Modelos Químicos , Simulação de Dinâmica Molecular , Trocadores de Sódio-Hidrogênio/química , Trocadores de Sódio-Hidrogênio/ultraestrutura , Sódio/química , Sítios de Ligação , Simulação por Computador , Cristalização , Dimerização , Ligação Proteica , Conformação Proteica , Prótons , Relação Estrutura-Atividade
12.
J Mol Biol ; 425(15): 2656-69, 2013 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-23659791

RESUMO

Bacterial enhancer binding proteins (bEBPs) are a subclass of the AAA(+) (ATPases Associated with various cellular Activities) protein family. They are responsible for σ(54)-dependent transcription activation during infection and function under many stressful growth conditions. The majority of bEBPs are regulated in their formation of ring-shaped hexameric self-assemblies via an amino-terminal domain through its phosphorylation or ligand binding. In contrast, the Escherichia coli phage shock protein F (PspF) is negatively regulated in trans by phage shock protein A (PspA). Up to six PspA subunits suppress PspF hexamer action. Here, we present biochemical evidence that PspA engages across the side of a PspF hexameric ring. We identify three key binding determinants located in a surface-exposed 'W56 loop' of PspF, which form a tightly packed hydrophobic cluster, the 'YLW' patch. We demonstrate the profound impact of the PspF W56 loop residues on ATP hydrolysis, the σ(54) binding loop 1, and the self-association interface. We infer from single-chain studies that for complete PspF inhibition to occur, more than three PspA subunits need to bind a PspF hexamer with at least two binding to adjacent PspF subunits. By structural modelling, we propose that PspA binds to PspF via its first two helical domains. After PspF binding-induced conformational changes, PspA may then share structural similarities with a bEBP regulatory domain.


Assuntos
Proteínas de Bactérias/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas de Choque Térmico/metabolismo , Transativadores/metabolismo , Trifosfato de Adenosina/metabolismo , Proteínas de Bactérias/química , Escherichia coli/química , Proteínas de Escherichia coli/química , Proteínas de Choque Térmico/química , Hidrólise , Modelos Biológicos , Modelos Moleculares , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , RNA Polimerase Sigma 54/metabolismo , Transativadores/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA