Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
J Biol Chem ; 298(1): 101440, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34808208

RESUMO

Metastatic lung cancer is a major cause of death worldwide. Dissemination of cancer cells can be facilitated by various agonists within the tumor microenvironment, including by lysophosphatidic acid (LPA). We postulate that Rho guanine nucleotide exchange factors (RhoGEFs), which integrate signaling cues driving cell migration, are critical effectors in metastatic cancer. Specifically, we addressed the hypothetical role of ARHGEF17, a RhoGEF, as a potential effector of Gßγ in metastatic lung cancer cells responding to LPA. Here, we show that ARHGEF17, originally identified as a tumor endothelial marker, is involved in tumor growth and metastatic dissemination of lung cancer cells in an immunocompetent murine model. Gene expression-based analysis of lung cancer datasets showed that increased levels of ARHGEF17 correlated with reduced survival of patients with advanced-stage tumors. Cellular assays also revealed that this RhoGEF participates in the invasive and migratory responses elicited by Gi protein-coupled LPA receptors via the Gßγ subunit complex. We demonstrate that this signaling heterodimer promoted ARHGEF17 recruitment to the cell periphery and actin fibers. Moreover, Gßγ allosterically activates ARHGEF17 by the removal of inhibitory intramolecular restrictions. Taken together, our results indicate that ARHGEF17 may be a valid potential target in the treatment of metastatic lung cancer.


Assuntos
Subunidades beta da Proteína de Ligação ao GTP , Subunidades gama da Proteína de Ligação ao GTP , Neoplasias Pulmonares , Fatores de Troca de Nucleotídeo Guanina Rho , Transdução de Sinais , Animais , Movimento Celular , Progressão da Doença , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Camundongos , Metástase Neoplásica , Receptores de Ácidos Lisofosfatídicos/genética , Receptores de Ácidos Lisofosfatídicos/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Transdução de Sinais/fisiologia , Microambiente Tumoral
2.
Int J Mol Sci ; 24(22)2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38003617

RESUMO

Cancer cell migration involves a repertoire of signaling proteins that lead cytoskeleton reorganization as a critical step in metastatic dissemination. RhoGEFs are multidomain effectors that integrate signaling inputs to activate the molecular switches that orchestrate actin cytoskeleton reorganization. Ephexins, a group of five RhoGEFs, play oncogenic roles in invasive and metastatic cancer, leading to a mechanistic hypothesis about their function as signaling nodes assembling functional complexes that guide cancer cell migration. To identify clinically significant Ephexin signaling partners, we applied three systematic data mining strategies, based on the screening of essential Ephexins in multiple cancer cell lines and the identification of coexpressed signaling partners in the TCGA cancer patient datasets. Based on the domain architecture of encoded proteins and gene ontology criteria, we selected Ephexin signaling partners with a role in cytoskeletal reorganization and cell migration. We focused on Ephexin3/ARHGEF5, identified as an essential gene in multiple cancer cell types. Based on significant coexpression data and coessentiality, the signaling repertoire that accompanies Ephexin3 corresponded to three groups: pan-cancer, cancer-specific and coessential. To further select the Ephexin3 signaling partners likely to be relevant in clinical settings, we first identified those whose high expression was statistical linked to shorter patient survival. The resulting Ephexin3 transcriptional signatures represent significant accumulated risk, predictive of shorter survival, in 17 cancer types, including PAAD, LUAD, LGG, OSC, AML, KIRC, THYM, BLCA, LIHC and UCEC. The signaling landscape that accompanies Ephexin3 in various cancer types included the tyrosine kinase receptor MET and the tyrosine phosphatase receptor PTPRF, the serine/threonine kinases MARK2 and PAK6, the Rho GTPases RHOD, RHOF and RAC1, and the cytoskeletal regulator DIAHP1. Our findings set the basis to further explore the role of Ephexin3/ARHGEF5 as an essential effector and signaling hub in cancer cell migration.


Assuntos
Neoplasias , Microambiente Tumoral , Humanos , Prognóstico , Transdução de Sinais , Movimento Celular/genética , Fatores de Troca de Nucleotídeo Guanina Rho/genética
3.
Int J Mol Sci ; 24(21)2023 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-37958718

RESUMO

Oncogenic Gαq causes uveal melanoma via non-canonical signaling pathways. This constitutively active mutant GTPase is also found in cutaneous melanoma, lung adenocarcinoma, and seminoma, as well as in benign vascular tumors, such as congenital hemangiomas. We recently described that PDZ-RhoGEF (also known as ARHGEF11), a canonical Gα12/13 effector, is enabled by Gαs Q227L to activate CdcIn addition, and we demonstrated that constitutively active Gαq interacts with the PDZ-RhoGEF DH-PH catalytic module, but does not affect its binding to RhoA or Cdc. This suggests that it guides this RhoGEF to gain affinity for other GTPases. Since RhoJ, a small GTPase of the Cdc42 subfamily, has been involved in tumor-induced angiogenesis and the metastatic dissemination of cancer cells, we hypothesized that it might be a target of oncogenic Gαq signaling via PDZ-RhoGEF. Consistent with this possibility, we found that Gαq Q209L drives full-length PDZ-RhoGEF and a DH-PH construct to interact with nucleotide-free RhoJ-G33A, a mutant with affinity for active RhoJ-GEFs. Gαq Q209L binding to PDZ-RhoGEF was mapped to the PH domain, which, as an isolated construct, attenuated the interaction of this mutant GTPase with PDZ-RhoGEF's catalytic module (DH-PH domains). Expression of these catalytic domains caused contraction of endothelial cells and generated fine cell sprouts that were inhibited by co-expression of dominant negative RhoJ. Using relational data mining of uveal melanoma patient TCGA datasets, we got an insight into the signaling landscape that accompanies the Gαq/PDZ-RhoGEF/RhoJ axis. We identified three transcriptional signatures statistically linked with shorter patient survival, including GPCRs and signaling effectors that are recognized as vulnerabilities in cancer cell synthetic lethality datasets. In conclusion, we demonstrated that an oncogenic Gαq mutant enables the PDZ-RhoGEF DH-PH module to recognize RhoJ, suggesting an allosteric mechanism by which this constitutively active GTPase stimulates RhoJ via PDZ-RhoGEF. These findings highlight PDZ-RhoGEF and RhoJ as potential targets in tumors driven by mutant Gαq.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Melanoma/genética , Células Endoteliais/metabolismo , Proteínas de Ligação ao GTP/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/genética , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo
4.
Int J Mol Sci ; 24(24)2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38139359

RESUMO

The serine-threonine kinase Akt plays a fundamental role in cell survival, metabolism, proliferation, and migration. To keep these essential processes under control, Akt activity and stability must be tightly regulated; otherwise, life-threatening conditions might prevail. Although it is well understood that phosphorylation regulates Akt activity, much remains to be known about how its stability is maintained. Here, we characterize BAG5, a chaperone regulator, as a novel Akt-interactor and substrate that attenuates Akt stability together with Hsp70. BAG5 switches monoubiquitination to polyubiquitination of Akt and increases its degradation caused by Hsp90 inhibition and Hsp70 overexpression. Akt interacts with BAG5 at the linker region that joins the first and second BAG domains and phosphorylates the first BAG domain. The Akt-BAG5 complex is formed in serum-starved conditions and dissociates in response to HGF, coincident with BAG5 phosphorylation. BAG5 knockdown attenuated Akt degradation and facilitated its activation, whereas the opposite effect was caused by BAG5 overexpression. Altogether, our results indicate that Akt stability and signaling are dynamically regulated by BAG5, depending on growth factor availability.


Assuntos
Chaperonas Moleculares , Proteínas Proto-Oncogênicas c-akt , Proteínas de Choque Térmico HSP70/metabolismo , Chaperonas Moleculares/metabolismo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ubiquitinação , Células HEK293 , Humanos , Animais , Camundongos
5.
J Biol Chem ; 295(50): 16920-16928, 2020 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-33023908

RESUMO

Gα proteins promote dynamic adjustments of cell shape directed by actin-cytoskeleton reorganization via their respective RhoGEF effectors. For example, Gα13 binding to the RGS-homology (RH) domains of several RH-RhoGEFs allosterically activates these proteins, causing them to expose their catalytic Dbl-homology (DH)/pleckstrin-homology (PH) regions, which triggers downstream signals. However, whether additional Gα proteins might directly regulate the RH-RhoGEFs was not known. To explore this question, we first examined the morphological effects of expressing shortened RH-RhoGEF DH/PH constructs of p115RhoGEF/ARHGEF1, PDZ-RhoGEF (PRG)/ARHGEF11, and LARG/ARHGEF12. As expected, the three constructs promoted cell contraction and activated RhoA, known to be downstream of Gα13 Intriguingly, PRG DH/PH also induced filopodia-like cell protrusions and activated Cdc42. This pathway was stimulated by constitutively active Gαs (GαsQ227L), which enabled endogenous PRG to gain affinity for Cdc42. A chemogenetic approach revealed that signaling by Gs-coupled receptors, but not by those coupled to Gi or Gq, enabled PRG to bind Cdc42. This receptor-dependent effect, as well as CREB phosphorylation, was blocked by a construct derived from the PRG:Gαs-binding region, PRG-linker. Active Gαs interacted with isolated PRG DH and PH domains and their linker. In addition, this construct interfered with GαsQ227L's ability to guide PRG's interaction with Cdc42. Endogenous Gs-coupled prostaglandin receptors stimulated PRG binding to membrane fractions and activated signaling to PKA, and this canonical endogenous pathway was attenuated by PRG-linker. Altogether, our results demonstrate that active Gαs can recognize PRG as a novel effector directing its DH/PH catalytic module to gain affinity for Cdc42.


Assuntos
Movimento Celular , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Domínios de Homologia à Plecstrina/genética , Pseudópodes/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Transdução de Sinais , Proteína cdc42 de Ligação ao GTP/metabolismo , Animais , Linhagem Celular , Humanos , Camundongos , Fosforilação
6.
Biochem Biophys Res Commun ; 539: 20-27, 2021 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-33412417

RESUMO

Gßγ marks the inner side of the plasma membrane where chemotactic GPCRs activate Rac to lead the assembly of actin filaments that push the cell to move forward. Upon dissociation from heterotrimeric Gi, Gßγ recruits and activates P-Rex1, a Rac guanine nucleotide exchange factor (RacGEF). This cytosolic chemotactic effector is kept inactive by intramolecular interactions. The mechanism by which Gßγ stimulates P-Rex1 has been debated. We hypothesized that Gßγ activates P-Rex1 by a two-step mechanism based on independent interaction interfaces to recruit and unroll this RacGEF. Using pulldown assays, we found that Gßγ binds P-Rex1-DH/PH as well as PDZ-PDZ domains. These domains and the DEP-DEP tandem interact among them and dissociate upon binding with Gßγ, arguing for a stimulatory allosteric effect. In addition, P-Rex1 catalytic activity is inhibited by its C-terminal domain. To discern P-Rex1 recruitment from activation, we studied Q-Rhox, a synthetic RhoGEF having the PDZ-RhoGEF catalytic DH/PH module, insensitive to Gßγ, swapped into P-Rex1. Gßγ recruited Q-Rhox to the plasma membrane, indicating that Gßγ/PDZ-PDZ interaction interface plays a role on P-Rex1 recruitment. In conclusion, we reconcile previous findings and propose a mechanistic model of P-Rex1 activation; accordingly, Gßγ recruits P-Rex1 via the Gßγ/PDZ-PDZ interface followed by a second contact involving the Gßγ/DH/PH interface to unleash P-Rex1 RacGEF activity at the plasma membrane.


Assuntos
Membrana Celular/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo , Citoesqueleto de Actina/metabolismo , Células HEK293 , Humanos , Domínios PDZ , Ligação Proteica , Transdução de Sinais
7.
J Biol Chem ; 294(7): 2232-2246, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30530493

RESUMO

Regulatory subunits of protein kinase A (PKA) inhibit its kinase subunits. Intriguingly, their potential as cAMP-dependent signal transducers remains uncharacterized. We recently reported that type I PKA regulatory subunits (RIα) interact with phosphatidylinositol 3,4,5-trisphosphate-dependent Rac exchange factor 1 (P-REX1), a chemotactic Rac guanine exchange factor (RacGEF). Because P-REX1 is known to be phosphorylated and inhibited by PKA, its interaction with RIα suggests that PKA regulatory and catalytic subunits may fine-tune P-REX1 activity or those of its target pools. Here, we tested whether RIα acts as a cAMP-dependent factor promoting P-REX1-mediated Rac activation and cell migration. We observed that Gs-coupled EP2 receptors indeed promote endothelial cell migration via RIα-activated P-REX1. Expression of the P-REX1-PDZ1 domain prevented RIα/P-REX1 interaction, P-REX1 activation, and EP2-dependent cell migration, and P-REX1 silencing abrogated RIα-dependent Rac activation. RIα-specific cAMP analogs activated P-REX1, but lost this activity in RIα-knockdown cells, and cAMP pulldown assays revealed that P-REX1 preferentially interacts with free RIα. Moreover, purified RIα directly activated P-REX1 in vitro We also found that the RIα CNB-B domain is critical for the interaction with P-REX1, which was increased in RIα mutants, such as the acrodysostosis-associated mutant, that activate P-REX1 at basal cAMP levels. RIα and Cα PKA subunits targeted distinct P-REX1 molecules, indicated by an absence of phosphorylation in the active fraction of P-REX1. This was in contrast to the inactive fraction in which phosphorylated P-REX1 was present, suggesting co-existence of dual stimulatory and inhibitory effects. We conclude that PKA's regulatory subunits are cAMP-dependent signal transducers.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , AMP Cíclico/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Sistemas do Segundo Mensageiro , Proteínas Quinases Ativadas por AMP/genética , Animais , Células COS , Chlorocebus aethiops , AMP Cíclico/genética , Técnicas de Silenciamento de Genes , Fatores de Troca do Nucleotídeo Guanina/genética , Células HEK293 , Humanos , Células MCF-7 , Domínios PDZ , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores de Prostaglandina E Subtipo EP2/genética , Receptores de Prostaglandina E Subtipo EP2/metabolismo
8.
J Biol Chem ; 294(2): 531-546, 2019 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-30446620

RESUMO

G protein-coupled receptors stimulate Rho guanine nucleotide exchange factors that promote mammalian cell migration. Rac and Rho GTPases exert opposing effects on cell morphology and are stimulated downstream of Gßγ and Gα12/13 or Gαq, respectively. These Gα subunits might in turn favor Rho pathways by preventing Gßγ signaling to Rac. Here, we investigated whether Gßγ signaling to phosphatidylinositol 3,4,5-trisphosphate-dependent Rac exchange factor 1 (P-REX1), a key Gßγ chemotactic effector, is directly controlled by Rho-activating Gα subunits. We show that pharmacological inhibition of Gαq makes P-REX1 activation by Gq/Gi-coupled lysophosphatidic acid receptors more effective. Moreover, chemogenetic control of Gi and Gq by designer receptors exclusively activated by designer drugs (DREADDs) confirmed that Gi differentially activates P-REX1. GTPase-deficient GαqQL and Gα13QL variants formed stable complexes with Gßγ, impairing its interaction with P-REX1. The N-terminal regions of these variants were essential for stable interaction with Gßγ. Pulldown assays revealed that chimeric Gα13-i2QL interacts with Gßγ unlike to Gαi2-13QL, the reciprocal chimera, which similarly to Gαi2QL could not interact with Gßγ. Moreover, Gßγ was part of tetrameric Gßγ-GαqQL-RGS2 and Gßγ-Gα13-i2QL-RGS4 complexes, whereas Gα13QL dissociated from Gßγ to interact with the PDZ-RhoGEF-RGS domain. Consistent with an integrated response, Gßγ and AKT kinase were associated with active SDF-1/CXCL12-stimulated P-REX1. This pathway was inhibited by GαqQL and Gα13QL, which also prevented CXCR4-dependent cell migration. We conclude that a coordinated mechanism prioritizes Gαq- and Gα13-mediated signaling to Rho over a Gßγ-dependent Rac pathway, attributed to heterotrimeric Gi proteins.


Assuntos
Movimento Celular , Subunidades alfa G12-G13 de Proteínas de Ligação ao GTP/metabolismo , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Transdução de Sinais , Animais , Células COS , Chlorocebus aethiops , Células HEK293 , Células HeLa , Humanos , Células MCF-7
9.
Biochem Biophys Res Commun ; 524(1): 109-116, 2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-31980169

RESUMO

Endothelial cell sprouting is a critical event in tumor-induced angiogenesis. In melanoma and lung cancer murine models, targeting RhoJ prevents endothelial sprouting, tumor growth and metastasis and enhances the effects of conventional anti-neoplastic therapy. Aiming to understand how RhoJ is activated, we used a gain of function approach to identify constitutively active Rho guanine nucleotide exchange factors (RhoGEFs) able to promote RhoJ-dependent actin-driven membrane protrusions. We demonstrate that a membrane-anchored Intersectin 1 (ITSN1) DH-PH construct promotes endothelial cell sprouting via RhoJ. Mechanistically, this is controlled by direct interaction between the catalytic ITSN1 DH-PH module and RhoJ, it is sensitive to phosphorylation by focal adhesion kinase (FAK) and to endosomal trapping of the ITSN1 construct by dominant negative RhoJ. This ITSN1/RhoJ signaling axis is independent of Cdc42, a previously characterized ITSN1 target and a RhoJ close homologue. In conclusion, our results elucidate an ITSN1/RhoJ molecular link able to promote endothelial cell sprouting and set the basis to explore this signaling pathway in the context of tumor-induced angiogenesis.


Assuntos
Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Antineoplásicos/química , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Proteínas rho de Ligação ao GTP/metabolismo , Citoesqueleto de Actina/metabolismo , Actinas/química , Animais , Membrana Celular/metabolismo , Extensões da Superfície Celular/efeitos dos fármacos , Endocitose , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Proteína-Tirosina Quinases de Adesão Focal/metabolismo , Adesões Focais , Células HEK293 , Humanos , Camundongos , Fosforilação , Transdução de Sinais , Suínos , Proteínas rho de Ligação ao GTP/química
10.
Biochim Biophys Acta Mol Cell Res ; 1864(10): 1714-1733, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28554775

RESUMO

Silencing Zonula occludens 2 (ZO-2), a tight junctions (TJ) scaffold protein, in epithelial cells (MDCK ZO-2 KD) triggers: 1) Decreased cell to substratum attachment, accompanied by reduced expression of claudin-7 and integrin ß1, and increased vinculin recruitment to focal adhesions and stress fibers formation; 2) Lowered cell-cell aggregation and appearance of wider intercellular spaces; 3) Increased RhoA/ROCK activity, mediated by GEF-HI recruitment to cell borders by cingulin; 4) Increased Cdc42 activity, mitotic spindle disorientation and the appearance of cysts with multiple lumens; 5) Increased Rac and cofilin activity, multiple lamellipodia formation and random cell migration but increased wound closure; 6) Diminished cingulin phosphorylation and disappearance of planar network of microtubules at the TJ region; and 7) Increased transepithelial electrical resistance at steady state, coupled to an increased expression of ZO-1 and claudin-4 and a decreased expression of claudin-2 and paracingulin. Hence, ZO-2 is a crucial regulator of Rho proteins activity and the development of epithelial cytoarchitecture and barrier function.


Assuntos
Junções Íntimas/metabolismo , Proteína da Zônula de Oclusão-1/genética , Proteína da Zônula de Oclusão-2/genética , Proteínas rac1 de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/genética , Animais , Claudina-2/metabolismo , Claudina-4/genética , Claudina-4/metabolismo , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Cães , Células Epiteliais/metabolismo , Humanos , Células Madin Darby de Rim Canino , Fosforilação , Junções Íntimas/genética , Transfecção
11.
J Biol Chem ; 292(29): 12178-12191, 2017 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-28600358

RESUMO

Developmental angiogenesis and the maintenance of the blood-brain barrier involve endothelial cell adhesion, which is linked to cytoskeletal dynamics. GPR124 (also known as TEM5/ADGRA2) is an adhesion G protein-coupled receptor family member that plays a pivotal role in brain angiogenesis and in ensuring a tight blood-brain barrier. However, the signaling properties of GPR124 remain poorly defined. Here, we show that ectopic expression of GPR124 promotes cell adhesion, additive to extracellular matrix-dependent effect, coupled with filopodia and lamellipodia formation and an enrichment of a pool of the G protein-coupled receptor at actin-rich cellular protrusions containing VASP, a filopodial marker. Accordingly, GPR124-expressing cells also displayed increased activation of both Rac and Cdc42 GTPases. Mechanistically, we uncover novel direct interactions between endogenous GPR124 and the Rho guanine nucleotide exchange factors Elmo/Dock and intersectin (ITSN). Small fragments of either Elmo or ITSN1 that bind GPR124 blocked GPR124-induced cell adhesion. In addition, Gßγ interacts with the C-terminal tail of GPR124 and promotes the formation of a GPR124-Elmo complex. Furthermore, GPR124 also promotes the activation of the Elmo-Dock complex, as measured by Elmo phosphorylation on a conserved C-terminal tyrosine residue. Interestingly, Elmo and ITSN1 also interact with each other independently of their GPR124-recognition regions. Moreover, endogenous phospho-Elmo and ITSN1 co-localize with GPR124 at lamellipodia of adhering endothelial cells, where GPR124 expression contributes to polarity acquisition during wound healing. Collectively, our results indicate that GPR124 promotes cell adhesion via Elmo-Dock and ITSN. This constitutes a previously unrecognized complex formed of atypical and conventional Rho guanine nucleotide exchange factors for Rac and Cdc42 that is putatively involved in GPR124-dependent angiogenic responses.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Endotélio Vascular/metabolismo , Processamento de Proteína Pós-Traducional , Receptores Acoplados a Proteínas G/metabolismo , Proteínas rac de Ligação ao GTP/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transporte Vesicular/química , Animais , Células COS , Adesão Celular , Células Cultivadas , Chlorocebus aethiops , Endotélio Vascular/citologia , Células HEK293 , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Fosforilação , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Transporte Proteico , Pseudópodes/metabolismo , Interferência de RNA , Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/genética , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/metabolismo , Proteínas rac de Ligação ao GTP/química
12.
Biochem Biophys Res Commun ; 505(4): 1121-1127, 2018 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-30316511

RESUMO

Calcium sensing receptor (CaSR) activates the NLRP3 inflammasome with consequences on homeostatic responses. However, little is known about how this process is orchestrated. Since proteolysis of critical regulators of NLRP3 inflammasome contribute to its activation, we aimed to understand how CaSR stimulates proteolytic pathways to activate the NLRP3 inflammasome. We found that proteasome and lysosome-dependent mechanisms are activated by CaSR to promote the degradation of important regulators of NLRP inflammasome. The pathway involves Gαq/PLC/PKC and Gßγ/PI3K signaling cascades and IRAK1 ubiquitination. In addition, CaSR stimulates Hsp70 expression activating a chaperone-assisted protein degradation that dictates the fate of ASC, NLRP3 (NOD-like receptor family protein 3), IRAK1 and TRAF6 proteins, turning on the NLRP3 inflammasome. In response to CaSR signaling, these proteins are degraded through the combination of CUPS (chaperone-assisted ubiquitin proteasome pathway) and CAEMI (chaperone-assisted endosomal microautophagy) systems being integrated by autophagosomes (chaperone-assisted macroautophagy, CAMA), as indicated by LC3-II, a classical marker for autophagy, that is induced in the process. Furthermore, CaSR triggers the proteolytic cleavage of pro-IL-1ß (IL-1ß, 31 kDa) into mature IL-1ß (IL-1ß, 17 kDa), via the proteasome. Taken together, our results indicate that CaSR promotes NLRP3 inflammasome activation and proteolytic maturation of IL-1ß by inducing CUPS and CAEMI, chaperone-assisted degradation pathways. Overall, these results support the inclusion of CaSR as an activator of homeostasis-altering molecular processes.


Assuntos
Proteínas de Choque Térmico HSP70/metabolismo , Inflamassomos/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Receptores de Detecção de Cálcio/metabolismo , Células Cultivadas , Células HEK293 , Humanos
13.
J Biol Chem ; 291(12): 6182-99, 2016 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-26797121

RESUMO

Morphology of migrating cells is regulated by Rho GTPases and fine-tuned by protein interactions and phosphorylation. PKA affects cell migration potentially through spatiotemporal interactions with regulators of Rho GTPases. Here we show that the endogenous regulatory (R) subunit of type I PKA interacts with P-Rex1, a Rac guanine nucleotide exchange factor that integrates chemotactic signals. Type I PKA holoenzyme interacts with P-Rex1 PDZ domains via the CNB B domain of RIα, which when expressed by itself facilitates endothelial cell migration. P-Rex1 activation localizes PKA to the cell periphery, whereas stimulation of PKA phosphorylates P-Rex1 and prevents its activation in cells responding to SDF-1 (stromal cell-derived factor 1). The P-Rex1 DEP1 domain is phosphorylated at Ser-436, which inhibits the DH-PH catalytic cassette by direct interaction. In addition, the P-Rex1 C terminus is indirectly targeted by PKA, promoting inhibitory interactions independently of the DEP1-PDZ2 region. A P-Rex1 S436A mutant construct shows increased RacGEF activity and prevents the inhibitory effect of forskolin on sphingosine 1-phosphate-dependent endothelial cell migration. Altogether, these results support the idea that P-Rex1 contributes to the spatiotemporal localization of type I PKA, which tightly regulates this guanine exchange factor by a multistep mechanism, initiated by interaction with the PDZ domains of P-Rex1 followed by direct phosphorylation at the first DEP domain and putatively indirect regulation of the C terminus, thus promoting inhibitory intramolecular interactions. This reciprocal regulation between PKA and P-Rex1 might represent a key node of integration by which chemotactic signaling is fine-tuned by PKA.


Assuntos
Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Membrana Celular/enzimologia , Movimento Celular , Quimiocina CXCL12/fisiologia , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/química , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Subunidade RIalfa da Proteína Quinase Dependente de AMP Cíclico/química , Células Endoteliais/fisiologia , Fatores de Troca do Nucleotídeo Guanina/química , Células HEK293 , Humanos , Fosforilação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Processamento de Proteína Pós-Traducional , Transporte Proteico , Transdução de Sinais , Técnicas do Sistema de Duplo-Híbrido
14.
Mol Pharmacol ; 90(5): 573-586, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27638873

RESUMO

Cancer cells and stroma cells in tumors secrete chemotactic agonists that exacerbate invasive behavior, promote tumor-induced angiogenesis, and recruit protumoral bone marrow-derived cells. In response to shallow gradients of chemotactic stimuli recognized by G protein-coupled receptors (GPCRs), Gßγ-dependent signaling cascades contribute to specifying the spatiotemporal assembly of cytoskeletal structures that can dynamically alter cell morphology. This sophisticated process is intrinsically linked to the activation of Rho GTPases and their cytoskeletal-remodeling effectors. Thus, Rho guanine nucleotide exchange factors, the activators of these molecular switches, and their upstream signaling partners are considered participants of tumor progression. Specifically, phosphoinositide-3 kinases (class I PI3Ks, ß and γ) and P-Rex1, a Rac-specific guanine nucleotide exchange factor, are fundamental Gßγ effectors in the pathways controlling directionally persistent motility. In addition, GPCR-dependent chemotactic responses often involve endosomal trafficking of signaling proteins; coincidently, endosomes serve as signaling platforms for Gßγ In preclinical murine models of cancer, inhibition of Gßγ attenuates tumor growth, whereas in cancer patients, aberrant overexpression of chemotactic Gßγ effectors and recently identified mutations in Gß correlate with poor clinical outcome. Here we discuss emerging paradigms of Gßγ signaling in cancer, which are essential for chemotactic cell migration and represent novel opportunities to develop pathway-specific pharmacologic treatments.


Assuntos
Movimento Celular , Polaridade Celular , Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais , Microambiente Tumoral , Animais , Humanos
15.
Biochim Biophys Acta ; 1853(1): 166-82, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25409930

RESUMO

Breast cancer metastasis to the bone, potentially facilitated by chemotactic and angiogenic cytokines, contributes to a dramatic osteolytic effect associated with this invasive behavior. Based on the intrinsic ability of calcium sensing receptor (CaSR) to control hormonal secretion and considering its expression in the breast, we hypothesized that CaSR plays a chemotactic and proangiogenic role in highly invasive MDA-MB-231 breast cancer cells by promoting secretion of multiple cytokines. In this study, we show that MDA-MB-231 cells stimulated with R-568 calcimimetic and extracellular calcium secreted multiple cytokines and growth factors that induced endothelial cell migration and in vitro angiogenesis. These effects were dependent on the activity of CaSR as demonstrated by the inhibitory effect of either anti-CaSR blocking monoclonal antibodies or calcilytic NPS-2143. Moreover, CaSR knockdown prevented the proangiogenic effect of CaSR agonists. Importantly, CaSR promoted secretion of pleiotropic molecules like GM-CSF, EGF, MDC/CCL22, FGF-4 and IGFBP2, all known to be chemotactic mediators with putative angiogenic factor properties. In contrast, constitutive secretion of IL-6 and ß-NGF was attenuated by CaSR. In the case of normal mammary cells, secretion of IL-6 was stimulated by CaSR, whereas a constitutive secretion of RANTES, Angiogenin and Oncostatin M was attenuated by this receptor. Taken together, our results indicate that an altered secretion of chemotactic and proangiogenic cytokines in breast cancer cells is modulated by CaSR, which can be considered a potential target in the therapy of metastatic breast cancer.


Assuntos
Neoplasias da Mama/patologia , Quimiotaxia/fisiologia , Citocinas/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Neovascularização Fisiológica/fisiologia , Receptores de Detecção de Cálcio/fisiologia , Compostos de Anilina/farmacologia , Neoplasias da Mama/imunologia , Neoplasias da Mama/fisiopatologia , Cálcio/metabolismo , Linhagem Celular Tumoral , Quimiocinas/metabolismo , Feminino , Humanos , Interleucina-6/fisiologia , Fenetilaminas , Propilaminas
17.
Biochem Biophys Res Commun ; 444(2): 218-23, 2014 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-24462769

RESUMO

Diverse G protein-coupled receptors depend on Gßγ heterodimers to promote cell polarization and survival via direct activation of PI3Kγ and potentially other effectors. These events involve full activation of AKT via its phosphorylation at Ser473, suggesting that mTORC2, the kinase that phosphorylates AKT at Ser473, is activated downstream of Gßγ. Thus, we tested the hypothesis that Gßγ directly contributes to mTOR signaling. Here, we demonstrate that endogenous mTOR interacts with Gßγ. Cell stimulation with serum modulates Gßγ interaction with mTOR. The carboxyl terminal region of mTOR, expressed as a GST-fusion protein, including the serine/threonine kinase domain, binds Gßγ heterodimers containing different Gß subunits, except Gß4. Both, mTORC1 and mTORC2 complexes interact with Gß1γ2 which promotes phosphorylation of their respective substrates, p70S6K and AKT. In addition, chronic treatment with rapamycin, a condition known to interfere with assembly of mTORC2, reduces the interaction between Gßγ and mTOR and the phosphorylation of AKT; whereas overexpression of Gαi interfered with the effect of Gßγ as promoter of p70S6K and AKT phosphorylation. Altogether, our results suggest that Gßγ positively regulates mTOR signaling via direct interactions and provide further support to emerging strategies based on the therapeutical potential of inhibiting different Gßγ signaling interfaces.


Assuntos
Subunidades beta da Proteína de Ligação ao GTP/metabolismo , Subunidades gama da Proteína de Ligação ao GTP/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Western Blotting , Ativação Enzimática/efeitos dos fármacos , Subunidades beta da Proteína de Ligação ao GTP/genética , Subunidades gama da Proteína de Ligação ao GTP/genética , Células HEK293 , Humanos , Imunoprecipitação , Alvo Mecanístico do Complexo 1 de Rapamicina , Alvo Mecanístico do Complexo 2 de Rapamicina , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Transdução de Sinais/efeitos dos fármacos , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/genética , Técnicas do Sistema de Duplo-Híbrido
18.
Heliyon ; 10(9): e30520, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38756586

RESUMO

Persistent HGF/Met signaling drives tumor growth and dissemination. Proteoglycans within the tumor microenvironment might control HGF availability and signaling by affecting its accessibility to Met (HGF receptor), likely defining whether acute or sustained HGF/Met signaling cues take place. Given that betaglycan (BG, also known as type III TGFß receptor or TGFBR3), a multi-faceted proteoglycan TGFß co-receptor, can be found within the tumor microenvironment, we addressed its hypothetical role in oncogenic HGF signaling. We found that HGF/Met promotes lung cancer and endothelial cells migration via PI3K and mTOR. This effect was enhanced by recombinant soluble betaglycan (solBG) via a mechanism attributable to its glycosaminoglycan chains, as a mutant without them did not modulate HGF effects. Moreover, soluble betaglycan extended the effect of HGF-induced phosphorylation of Met, Akt, and Erk, and membrane recruitment of the RhoGEF P-Rex1. Data-mining analysis of lung cancer patient datasets revealed a significant correlation between high MET receptor, HGF, and PREX1 expression and reduced patient survival. Soluble betaglycan showed biochemical interaction with HGF and, together, they increased tumor growth in immunocompetent mice. In conclusion, the oncogenic properties of the HGF/Met pathway are enhanced and sustained by GAG-containing soluble betaglycan.

19.
IUBMB Life ; 65(12): 1035-42, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24273150

RESUMO

Calcium-sensing receptor (CaSR) contributes to maintain homeostatic levels of extracellular calcium. In addition, CaSR controls other cellular activities such as proliferation and migration, particularly in cells not related to extracellular calcium homeostasis, potentially by cross-talking with parallel signaling pathways. Here we report that CaSR attenuates transforming growth factor-ß (TGF-ß)-signaling in hepatic C9 cells and in transfected HEK293 cells. Wild type CaSR interferes with TGF-ß-dependent Smad2 phosphorylation and induces its proteasomal degradation, resulting in a decrease of TGF-ß-dependent transcriptional activity, whereas an inactivating CaSR mutant does not transduce an inhibitory effect of extracellular calcium on TGF-ß signaling. Attenuation of TGF-ß signaling in response to extracellular calcium is linked to Rab11-dependent CaSR-trafficking with the intervention of CaSR carboxyl-terminal tail. Our data suggest that CaSR might regulate TGF-ß-dependent cellular responses mediated by TGF-ß signaling inhibition.


Assuntos
Processamento de Proteína Pós-Traducional , Receptores de Detecção de Cálcio/metabolismo , Transdução de Sinais , Proteína Smad2/metabolismo , Fator de Crescimento Transformador beta1/fisiologia , Animais , Células HEK293 , Humanos , Proteína Relacionada ao Hormônio Paratireóideo/metabolismo , Fosforilação , Complexo de Endopeptidases do Proteassoma/metabolismo , Transporte Proteico , Proteólise , Ratos
20.
Cell Signal ; 109: 110749, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37290677

RESUMO

Metastatic cancer cells dynamically adjust their shape to adhere, invade, migrate, and expand to generate secondary tumors. Inherent to these processes is the constant assembly and disassembly of cytoskeletal supramolecular structures. The subcellular places where cytoskeletal polymers are built and reorganized are defined by the activation of Rho GTPases. These molecular switches directly respond to signaling cascades integrated by Rho guanine nucleotide exchange factors (RhoGEFs), which are sophisticated multidomain proteins that control morphological behavior of cancer and stromal cells in response to cell-cell interactions, tumor-secreted factors and actions of oncogenic proteins within the tumor microenvironment. Stromal cells, including fibroblasts, immune and endothelial cells, and even projections of neuronal cells, adjust their shapes and move into growing tumoral masses, building tumor-induced structures that eventually serve as metastatic routes. Here we review the role of RhoGEFs in metastatic cancer. They are highly diverse proteins with common catalytic modules that select among a variety of homologous Rho GTPases enabling them to load GTP, acquiring an active conformation that stimulates effectors controlling actin cytoskeleton remodeling. Therefore, due to their strategic position in oncogenic signaling cascades, and their structural diversity flanking common catalytic modules, RhoGEFs possess unique characteristics that make them conceptual targets of antimetastatic precision therapies. Preclinical proof of concept, demonstrating the antimetastatic effect of inhibiting either expression or activity of ßPix (ARHGEF7), P-Rex1, Vav1, ARHGEF17, and Dock1, among others, is emerging.


Assuntos
Neoplasias , Proteínas rho de Ligação ao GTP , Humanos , Proteínas rho de Ligação ao GTP/metabolismo , Células Endoteliais/metabolismo , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Transdução de Sinais/fisiologia , Neoplasias/metabolismo , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA