RESUMO
PURPOSE: High throughput sequencing analysis has facilitated the rapid analysis of the entire titin (TTN) coding sequence. This has resulted in the identification of a growing number of recessive titinopathy patients. The aim of this study was to (1) characterize the causative genetic variants and clinical features of the largest cohort of recessive titinopathy patients reported to date and (2) to evaluate genotype-phenotype correlations in this cohort. METHODS: We analyzed clinical and genetic data in a cohort of patients with biallelic pathogenic or likely pathogenic TTN variants. The cohort included both previously reported cases (100 patients from 81 unrelated families) and unreported cases (23 patients from 20 unrelated families). RESULTS: Overall, 132 causative variants were identified in cohort members. More than half of the cases had hypotonia at birth or muscle weakness and a delayed motor development within the first 12 months of life (congenital myopathy) with causative variants located along the entire gene. The remaining patients had a distal or proximal phenotype and a childhood or later (noncongenital) onset. All noncongenital cases had at least one pathogenic variant in one of the final three TTN exons (362-364). CONCLUSION: Our findings suggest a novel association between the location of nonsense variants and the clinical severity of the disease.
Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Hipotonia Muscular , Criança , Conectina/genética , Estudos de Associação Genética , Humanos , Mutação , FenótipoRESUMO
BACKGROUND: Uterine leiomyomas from hereditary leiomyomatosis and renal cell cancer (HLRCC) patients are driven by fumarate hydratase (FH) inactivation or occasionally by mediator complex subunit 12 (MED12) mutations. The aim of this study was to analyse whether MED12 mutations and FH inactivation are mutually exclusive and to determine the contribution of MED12 mutations on HLRCC patients' myomagenesis. METHODS: MED12 exons 1 and 2 mutation screening and 2SC immunohistochemistry indicative for FH deficiency was performed on a comprehensive series of HLRCC patients' (122 specimens) and sporadic (66 specimens) tumours. Gene expression analysis was performed using Affymetrix GeneChip Human Exon Arrays (Affymetrix, Santa Clara, CA, USA). RESULTS: Nine tumours from HLRCC patients harboured a somatic MED12 mutation and were negative for 2SC immunohistochemistry. All remaining successfully analysed lesions (107/116) were deficient for FH. Of sporadic tumours, 35/64 were MED12 mutation positive and none displayed a FH defect. In global gene expression analysis FH-deficient tumours clustered together, whereas HLRCC patients' MED12 mutation-positive tumours clustered together with sporadic MED12 mutation-positive tumours. CONCLUSIONS: Somatic MED12 mutations and biallelic FH inactivation are mutually exclusive in both HLRCC syndrome-associated and sporadic uterine leiomyomas. The great majority of HLRCC patients' uterine leiomyomas are caused by FH inactivation, but incidental tumours driven by somatic MED12 mutations also occur. These MED12 mutation-positive tumours display similar expressional profiles with their sporadic counterparts and are clearly separate from FH-deficient tumours.
Assuntos
Biomarcadores Tumorais/genética , Fumarato Hidratase/metabolismo , Leiomioma/enzimologia , Leiomioma/genética , Complexo Mediador/genética , Neoplasias Uterinas/enzimologia , Neoplasias Uterinas/genética , Ativação Enzimática , Feminino , Mutação em Linhagem Germinativa , Humanos , Imuno-Histoquímica , Complexo Mediador/metabolismo , Mutação , TranscriptomaRESUMO
We report the first mosaic mutation, a deletion of exons 11-107, identified in the nebulin gene in a Finnish patient presenting with a predominantly distal congenital myopathy and asymmetric muscle weakness. The female patient is ambulant and currently 26 years old. Muscle biopsies showed myopathic features with type 1 fibre predominance, strikingly hypotrophic type 2 fibres and central nuclei, but no nemaline bodies. The deletion was detected in a copy number variation analysis based on next-generation sequencing data. The parents of the patient did not carry the deletion. Mosaicism was detected using a custom, targeted comparative genomic hybridisation array. Expression of the truncated allele, less than half the size of full-length nebulin, was confirmed by Western blotting. The clinical and histological picture resembled that of a family with a slightly smaller deletion, and that in patients with recessively inherited distal forms of nebulin-caused myopathy. Asymmetry, however, was a novel feature.
Assuntos
Miopatias Distais/genética , Mosaicismo , Proteínas Musculares/genética , Debilidade Muscular/etiologia , Miotonia Congênita/genética , Adulto , Biópsia , Éxons/genética , Músculos Faciais/patologia , Feminino , Finlândia , Heterozigoto , Humanos , Mutação , Linhagem , Deleção de SequênciaRESUMO
Human genes have a variable length. Those having a coding sequence of extraordinary length and a high number of exons were almost impossible to sequence using the traditional Sanger-based gene-by-gene approach. High-throughput sequencing has partly overcome the size-related technical issues, enabling a straightforward, rapid and relatively inexpensive analysis of large genes.Several large genes (e.g. TTN, NEB, RYR1, DMD) are recognized as disease-causing in patients with skeletal muscle diseases. However, because of their sheer size, the clinical interpretation of variants in these genes is probably the most challenging aspect of the high-throughput genetic investigation in the field of skeletal muscle diseases.The main aim of this review is to discuss the technical and interpretative issues related to the diagnostic investigation of large genes and to reflect upon the current state of the art and the future advancements in the field.
Assuntos
Testes Genéticos , Doenças Musculoesqueléticas/diagnóstico , Doenças Musculoesqueléticas/genética , HumanosRESUMO
Bioinformatics tools for analyzing copy number variants (CNVs) from massively parallel sequencing (MPS) data are less well developed compared with other variant types. We present an efficient bioinformatics pipeline for CNV detection from gene panel MPS data in neuromuscular disorders. CNVs were generated in silico into samples sequenced with a previously published MPS gene panel. The in silico CNVs from these samples were analyzed with four programs having complementary CNV detection ranges: CoNIFER, XHMM, ExomeDepth, and CODEX. A logistic regression model was trained with the obtained set of in silico CNV detections to predict true-positive CNV detections among all CNV detections from samples. This model was validated using 66 control samples with a verified true-positive (n = 58) or false-positive (n = 8) CNV detection. Applying all four programs together provided more sensitive detection results with in silico CNVs than other program combinations or any program alone. Furthermore, a model with CNV detection-specific scores from all four programs as variables performed overall best in the validation. No single program could detect all CNV sizes and types equally or with enough accuracy. Therefore, a combination of carefully selected programs should be used to maximize detection accuracy. In addition, the detected CNVs should be reviewed with a statistical model to streamline and standardize the filtering of the detections for annotation.
Assuntos
Biologia Computacional/métodos , Variações do Número de Cópias de DNA/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Modelos Estatísticos , Doenças Neuromusculares/genética , Estudos de Coortes , Simulação por Computador , Exoma , Éxons , Feminino , Humanos , Modelos Logísticos , Masculino , Mosaicismo , Polimorfismo de Nucleotídeo Único , Sensibilidade e Especificidade , Análise de Sequência de DNARESUMO
OBJECTIVE: To describe adult-onset limb-girdle-type muscular dystrophy caused by biallelic variants in the PYROXD1 gene, which has been recently linked to early-onset congenital myofibrillar myopathy. METHODS: Whole exome sequencing was performed for adult-onset neuromuscular disease patients with no molecular diagnosis. Patients with PYROXD1 variants underwent clinical characterization, lower limb muscle MRI, muscle biopsy and spirometry. A yeast complementation assay was used to determine the biochemical consequences of the genetic variants. RESULTS: We identified four patients with biallelic PYROXD1 variants. Three patients, who had symptom onset in their 20s or 30s, were homozygous for the previously described p.Asn155Ser. The fourth patient, with symptom onset at age 49, was compound heterozygous for p.Asn155Ser variant and previously unknown p.Tyr354Cys. All patients presented with a LGMD-type phenotype of symmetric muscle weakness and wasting. Symptoms started in proximal muscles of the lower limbs, and progressed slowly to involve also upper limbs in a proximal-predominant fashion. All patients remained ambulant past the age of 60. They had restrictive lung disease but no cardiac impairment. Muscle MRI showed strong involvement of anterolateral thigh muscles. Muscle biopsy displayed chronic myopathic changes. Yeast complementation assay demonstrated the p.Tyr354Cys mutation to impair PYROXD1 oxidoreductase ability. CONCLUSION: PYROXD1 variants can cause an adult-onset slowly progressive LGMD-type phenotype.
Assuntos
Distrofia Muscular do Cíngulo dos Membros/genética , Distrofia Muscular do Cíngulo dos Membros/fisiopatologia , Oxirredutases/genética , Idoso , Feminino , Finlândia , Genes Recessivos , Humanos , Masculino , Distrofia Muscular do Cíngulo dos Membros/patologia , Linhagem , Sequenciamento do ExomaRESUMO
OBJECTIVE: To identify the genetic defect causing a distal calf myopathy with cores. METHODS: Families with a genetically undetermined calf-predominant myopathy underwent detailed clinical evaluation, including EMG/nerve conduction studies, muscle biopsy, laboratory investigations, and muscle MRI. Next-generation sequencing and targeted Sanger sequencing were used to identify the causative genetic defect in each family. RESULTS: A novel deletion-insertion mutation in ryanodine receptor 1 (RYR1) was found in the proband of the index family and segregated with the disease in 6 affected relatives. Subsequently, we found 2 more families with a similar calf-predominant myopathy segregating with unique RYR1-mutated alleles. All patients showed a very slowly progressive myopathy without episodes of malignant hyperthermia or rhabdomyolysis. Muscle biopsy showed cores or core-like changes in all families. CONCLUSIONS: Our findings expand the spectrum of RYR1-related disorders to include a calf-predominant myopathy with core pathology and autosomal dominant inheritance. Two families had unique and previously unreported RYR1 mutations, while affected persons in the third family carried 2 previously known mutations in the same dominant allele.
Assuntos
Miopatias Distais/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Adolescente , Adulto , Idoso , Criança , Creatina Quinase/metabolismo , Miopatias Distais/metabolismo , Miopatias Distais/patologia , Miopatias Distais/fisiopatologia , Feminino , Humanos , Mutação INDEL , Perna (Membro) , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Linhagem , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismoRESUMO
BACKGROUND: Our previous array, the Comparative Genomic Hybridisation design (CGH-array) for nemaline myopathy (NM), named the NM-CGH array, revealed pathogenic copy number variation (CNV) in the genes for nebulin (NEB) and tropomyosin 3 (TPM3), as well as recurrent CNVs in the segmental duplication (SD), i.e. triplicate, region of NEB (TRI, exons 82-89, 90-97, 98-105). In the light of this knowledge, we have designed and validated an extended CGH array, which includes a selection of 187 genes known to cause neuromuscular disorders (NMDs). OBJECTIVE: Our aim was to develop a reliable method for CNV detection in genes related to neuromuscular disorders for routine mutation detection and analysis, as a much-needed complement to sequencing methods. METHODS: We have developed a novel custom-made 4×180 k CGH array for the diagnostics of NMDs. It includes the same tiled ultra-high density coverage of the 12 known or putative NM genes as our 8×60 k NM-CGH-array but also comprises a selection of 175 additional genes associated with NMDs, including titin (TTN), at a high to very high coverage. The genes were divided into three coverage groups according to known and potential pathogenicity in neuromuscular disorders. RESULTS: The array detected known and putative CNVs in all three gene coverage groups, including the repetitive regions of NEB and TTN. CONCLUSIONS: The targeted neuromuscular disorder 4×180 k array-CGH (NMD-CGH-array v1.0) design allows CNV detection for a broader spectrum of neuromuscular disorders at a high resolution.
Assuntos
Variações do Número de Cópias de DNA/genética , Doenças Neuromusculares/diagnóstico , Doenças Neuromusculares/genética , Adulto , Conectina/genética , DNA/genética , Feminino , Genômica/métodos , Humanos , Masculino , Análise em Microsséries , Proteínas Musculares/genética , Mutação/genética , Miopatias da Nemalina/genética , Análise de Sequência com Séries de Oligonucleotídeos , Reprodutibilidade dos TestesRESUMO
OBJECTIVE: Copy number variants (CNVs) were analyzed from next-generation sequencing data, with the aim of improving diagnostic yield in skeletal muscle disorder cases. METHODS: Four publicly available bioinformatic analytic tools were used to analyze CNVs from sequencing data from patients with muscle diseases. The patients were previously analyzed with a targeted gene panel for single nucleotide variants and small insertions and deletions, without achieving final diagnosis. Variants detected by multiple CNV analysis tools were verified with either array comparative genomic hybridization or PCR. The clinical significance of the verified CNVs was interpreted, considering previously identified variants, segregation studies, and clinical information of the patient cases. RESULTS: Combining analysis of all different mutation types enabled integration of results and identified the final cause of the disease in 9 myopathy cases. Complex effects like compound heterozygosity of different mutation types and compound disease arising from variants of different genes were unraveled. We identified the first large intragenic deletion of the titin (TTN) gene implicated in the pathogenesis of a severe form of myopathy. Our work also revealed a "double-trouble" effect in a patient carrying a single heterozygous insertion/deletion mutation in the TTN gene and a Becker muscular dystrophy causing deletion in the dystrophin gene. CONCLUSIONS: Causative CNVs were identified proving that analysis of CNVs is essential for increasing the diagnostic yield in muscle diseases. Complex severe muscular dystrophy phenotypes can be the result of different mutation types but also of the compound effect of 2 different genetic diseases.