RESUMO
Replacement of pancreatic ß-cells is one of the most promising treatment options for treatment of type 1 diabetes (T1D), even though, toxic immunosuppressive drugs are required. In this study, we aim to deliver allogeneic ß-cell therapies without antirejection drugs using a bioengineered hybrid device that contains microencapsulated ß-cells inside 3D polycaprolactone (PCL) scaffolds printed using melt electrospin writing (MEW). Mouse ß-cell (MIN6) pseudoislets and QS mouse islets are encapsulated in alginate microcapsules, without affecting viability and insulin secretion. Microencapsulated MIN6 cells are then seeded within 3D MEW scaffolds, and these hybrid devices implanted subcutaneously in streptozotocin-treated diabetic NOD/SCID and BALB/c mice. Similar to NOD/SCID mice, blood glucose levels (BGL) are lowered from 30.1 to 4.8 mM in 25-41 days in BALB/c. In contrast, microencapsulated islets placed in prevascularized MEW scaffold 3 weeks after implantation in BALB/c mice normalize BGL (<12 mM) more rapidly, lasting for 60-105 days. The lowering of glucose levels is confirmed by an intraperitoneal glucose tolerance test. Vascularity within the implanted grafts is demonstrated and quantified by 3D-doppler ultrasound, with a linear increase over 4 weeks (r = 0.65). Examination of the device at 5 weeks shows inflammatory infiltrates of neutrophils, macrophages, and B-lymphocytes on the MEW scaffolds, but not on microcapsules, which have infrequent profibrotic walling. In conclusion, we demonstrate the fabrication of an implantable and retrievable hybrid device for vascularization and enhancing the survival of encapsulated islets implanted subcutaneously in an allotransplantation setting without immunosuppression. This study provides proof-of-concept for the application of such devices for human use, but, will require modifications to allow translation to people with T1D. Impact statement The retrievable 3D printed PCL scaffold we have produced promotes vascularization when implanted subcutaneously and allows seeded microencapsulated insulin-producing cells to normalize blood glucose of diabetic mice for at least 2 months, without the need for antirejection drugs to be administered. The scaffold is scalable for possible human use, but will require modification to ensure that normalization of blood glucose levels can be maintained long term.
Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Animais , Glicemia , Cápsulas , Diabetes Mellitus Experimental/terapia , Humanos , Insulina , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCIDRESUMO
Pericapsular fibrotic overgrowth (PFO) may be attributed to an immune response against microcapsules themselves or to antigen shedding through microcapsule pores from encapsulated islet tissue. Modification of microcapsules aimed at reducing pore size should prevent PFO and improve graft survival. This study investigated the effect of increased gelling time (20 vs. 2 min) in barium chloride on intrinsic properties of alginate microcapsules and tested their biocompatibility in vivo. Prolonged gelling time affected neither permeability nor size of the microcapsules. However, prolonged gelling time for 20 min produced brittle microcapsules compared to 2 min during compression test. Encapsulation of human islets in both types of microcapsules affected neither islet viability nor function. The presence of PFO when transplanted into a large animal model such as baboon and its absence in small animal models such as rodents suggest that the host immune response towards alginate microcapsules is species rather than alginate specific.
Assuntos
Alginatos/química , Alginatos/metabolismo , Materiais Biocompatíveis/química , Materiais Biocompatíveis/metabolismo , Teste de Materiais , Animais , Cápsulas , Sobrevivência Celular , Células Imobilizadas/citologia , Feminino , Géis/química , Géis/metabolismo , Ácido Glucurônico/química , Ácido Glucurônico/metabolismo , Ácidos Hexurônicos/química , Ácidos Hexurônicos/metabolismo , Humanos , Ilhotas Pancreáticas/citologia , Transplante das Ilhotas Pancreáticas , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Nus , Papio , Permeabilidade , Ratos , Ratos Wistar , Fatores de TempoRESUMO
PURPOSE OF REVIEW: The transplantation of human islets has come a long way since the first diabetic person became insulin independent in 1989. The advent of a steroid-free immunosuppressive protocol in 2000 resulted in most recipients becoming insulin independent and remaining so for a year. However, beta-cell function declines thereafter. Strategies to enhance the islet mass transplanted and preserve beta-cell function are necessary. RECENT FINDINGS: This review covers recent advances in determining the selection of appropriate enzymes for islet isolation, use of pancreases from heart-dead donors and techniques for predicting the functional capacity of isolated islets prior to transplantation. Changing the transplantation site away from the liver, where many islets are destroyed by an inflammatory process, is reviewed, and the possibility of seeding islets onto three-dimensional biodegradable scaffolds discussed. A method of preventing apoptosis of the beta cells prior to transplantation is detailed, as is the beneficial effect of using exenatide, after transplantation. Novel techniques to image islets are discussed, and this requires the labelling of the islets prior to implantation. Enhancing the vascularization of islets is shown to enhance functional outcomes. Encapsulation of the islets should obviate the need for using antirejection drugs, and it may be possible to expand beta cells in vitro. SUMMARY: The above strategies are likely to enhance the outcomes of clinical islet transplants.
Assuntos
Diabetes Mellitus Tipo 1/cirurgia , Rejeição de Enxerto/prevenção & controle , Sobrevivência de Enxerto/efeitos dos fármacos , Imunossupressores/uso terapêutico , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas/efeitos dos fármacos , Animais , Apoptose , Proliferação de Células , Células Cultivadas , Colagenases/química , Diabetes Mellitus Tipo 1/patologia , Exenatida , Rejeição de Enxerto/patologia , Rejeição de Enxerto/fisiopatologia , Humanos , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/transplante , Ilhotas Pancreáticas/irrigação sanguínea , Ilhotas Pancreáticas/patologia , Transplante das Ilhotas Pancreáticas/métodos , Neovascularização Fisiológica , Peptídeos/uso terapêutico , Coloração e Rotulagem/métodos , Termolisina/química , Doadores de Tecidos , Alicerces Teciduais , Peçonhas/uso terapêuticoRESUMO
Transplantation of pancreatic islets encapsulated within immuno-protective microcapsules is a strategy that has the potential to overcome graft rejection without the need for toxic immunosuppressive medication. However, despite promising preclinical studies, clinical trials using encapsulated islets have lacked long-term efficacy, and although generally considered clinically safe, have not been encouraging overall. One of the major factors limiting the long-term function of encapsulated islets is the host's immunological reaction to the transplanted graft which is often manifested as pericapsular fibrotic overgrowth (PFO). PFO forms a barrier on the capsule surface that prevents the ingress of oxygen and nutrients leading to islet cell starvation, hypoxia and death. The mechanism of PFO formation is still not elucidated fully and studies using a pig model have tried to understand the host immune response to empty alginate microcapsules. In this review, the varied strategies to overcome or reduce PFO are discussed, including alginate purification, altering microcapsule geometry, modifying alginate chemical composition, co-encapsulation with immunomodulatory cells, administration of pharmacological agents, and alternative transplantation sites. Nanoencapsulation technologies, such as conformal and layer-by-layer coating technologies, as well as nanofiber, thin-film nanoporous devices, and silicone based NanoGland devices are also addressed. Finally, this review outlines recent progress in imaging technologies to track encapsulated cells, as well as promising perspectives concerning the production of insulin-producing cells from stem cells for encapsulation.
Assuntos
Transplante das Ilhotas Pancreáticas/métodos , Ilhotas Pancreáticas/citologia , Técnicas de Cultura de Tecidos/métodos , Animais , Cápsulas , Separação Celular/métodos , Separação Celular/tendências , Diabetes Mellitus Tipo 1/terapia , Composição de Medicamentos/métodos , Sobrevivência de Enxerto , Humanos , Ilhotas Pancreáticas/fisiologia , Transplante das Ilhotas Pancreáticas/tendênciasRESUMO
Pericapsular fibrotic overgrowth (PFO) is associated with poor survival of encapsulated islets. A strategy to combat PFO is the use of mesenchymal stem cells (MSC). MSC have anti-inflammatory properties and their potential can be enhanced by stimulation with proinflammatory cytokines. This study investigated whether co-encapsulation or co-transplantation of MSC with encapsulated islets would reduce PFO and improve graft survival. Stimulating MSC with a cytokine cocktail of IFN-γ and TNF-α enhanced their immunosuppressive potential by increasing nitric oxide production and secreting higher levels of immunomodulatory cytokines. In vitro, co-encapsulation with MSC did not affect islet viability but significantly enhanced glucose-induced insulin secretion. In vivo, normoglycemia was achieved in 100% mice receiving islets co-encapsulated with stimulated MSC as opposed to 71.4% receiving unstimulated MSC and only 9.1% receiving encapsulated islets alone. Microcapsules retrieved from both unstimulated and stimulated MSC groups had significantly less PFO with improved islet viability and function compared to encapsulated islets alone. Levels of peritoneal immunomodulatory cytokines IL-4, IL-6, IL-10 and G-CSF were significantly higher in MSC co-encapsulated groups. Similar results were obtained when encapsulated islets and MSC were co-transplanted. In summary, co-encapsulation or co-transplantation of MSC with encapsulated islets reduced PFO and improved the functional outcome of allotransplants.
Assuntos
Composição de Medicamentos/métodos , Sobrevivência de Enxerto/fisiologia , Transplante das Ilhotas Pancreáticas/métodos , Ilhotas Pancreáticas/metabolismo , Transplante de Células-Tronco Mesenquimais/métodos , Alginatos/química , Animais , Células Imobilizadas/citologia , Células Imobilizadas/efeitos dos fármacos , Células Imobilizadas/imunologia , Citocinas/genética , Citocinas/imunologia , Feminino , Fibrose/prevenção & controle , Expressão Gênica , Insulina/biossíntese , Interferon gama/farmacologia , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/imunologia , Masculino , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Transplante Homólogo , Fator de Necrose Tumoral alfa/farmacologiaRESUMO
Mitochondrial deoxyribonucleic acid (mtDNA) copy number is tightly regulated during pluripotency and differentiation. There is increased demand of cellular adenosine triphosphate (ATP) during differentiation for energy-intensive cell types such as hepatocytes and neurons to meet the cell's functional requirements. During hepatocyte differentiation, mtDNA copy number should be synchronously increased to generate sufficient ATP through oxidative phosphorylation. Unlike bone marrow mesenchymal cells, mtDNA copy number failed to increase by 28 days of differentiation of human amniotic epithelial cells (hAEC) into hepatocyte-like cells (HLC) despite their expression of some end-stage hepatic markers. This was due to higher levels of DNA methylation at exon 2 of POLGA, the mtDNA-specific replication factor. Treatment with a DNA demethylation agent, 5-azacytidine, resulted in increased mtDNA copy number, reduced DNA methylation at exon 2 of POLGA, and reduced hepatic gene expression. Depletion of mtDNA followed by subsequent differentiation did not increase mtDNA copy number, but reduced DNA methylation at exon 2 of POLGA and increased expression of hepatic and pluripotency genes. We encapsulated hAEC in barium alginate microcapsules and subsequently differentiated them into HLC. Encapsulation resulted in no net increase of mtDNA copy number but a significant reduction in DNA methylation of POLGA. RNAseq analysis showed that differentiated HLC express hepatocyte-specific genes but also increased expression of inflammatory interferon genes. Differentiation in encapsulated cells showed suppression of inflammatory genes as well as increased expression of genes associated with hepatocyte function pathways and networks. This study demonstrates that an increase in classical hepatic gene expression can be achieved in HLC through encapsulation, although they fail to effectively regulate mtDNA copy number.
Assuntos
Âmnio/citologia , Diferenciação Celular/genética , Variações do Número de Cópias de DNA/genética , DNA Mitocondrial/genética , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Hepatócitos/citologia , Carcinogênese/genética , Sobrevivência Celular , Dosagem de Genes , Regulação da Expressão Gênica , Hepatócitos/metabolismo , Humanos , Mitocôndrias/metabolismoRESUMO
Host reactivity to biocompatible immunoisolation devices is a major challenge for cellular therapies, and a human screening model would be of great value. We designed new types of surface modified barium alginate microspheres, and evaluated their inflammatory properties using human whole blood, and the intraperitoneal response after three weeks in Wistar rats. Microspheres were modified using proprietary polyallylamine (PAV) and coupled with macromolecular heparin conjugates (Corline Heparin Conjugate, CHC). The PAV-CHC strategy resulted in uniform and stable coatings with increased anti-clot activity and low cytotoxicity. In human whole blood, PAV coating at high dose (100 µg/ml) induced elevated complement, leukocyte CD11b and inflammatory mediators, and in Wistar rats increased fibrotic overgrowth. Coating of high dose PAV with CHC significantly reduced these responses. Low dose PAV (10 µg/ml) ± CHC and unmodified alginate microbeads showed low responses. That the human whole blood inflammatory reactions paralleled the host response shows a link between inflammatory potential and initial fibrotic response. CHC possessed anti-inflammatory activity, but failed to improve overall biocompatibility. We conclude that the human whole blood assay is an efficient first-phase screening model for inflammation, and a guiding tool in development of new generation microspheres for cell encapsulation therapy.
Assuntos
Heparina/toxicidade , Teste de Materiais , Microesferas , Poliaminas/toxicidade , Alginatos , Animais , Células Sanguíneas/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Fibrose/induzido quimicamente , Humanos , Mediadores da Inflamação/análise , Injeções Intraperitoneais , Peritônio/patologia , Ratos WistarRESUMO
Microencapsulated islets are usually injected free-floating into the peritoneal cavity, so the position of the grafts remains elusive after transplantation. This study aims to assess magnetic resonance imaging (MRI) as a noninvasive means to track microencapsulated insulin producing cells following transplantation. Encapsulated insulin producing cells (MIN6 and human islets) were labelled with magnetic microspheres (MM), assessed for viability and insulin secretion, and imaged in vitro using a clinical grade 3 T MRI and in vivo using both clinical grade 3 T and research grade 11.7 T MRI. Fluorescent imaging demonstrated the uptake of MM by both MIN6 and human islets with no changes in cell morphology and viability. MM labelling did not affect the glucose responsiveness of encapsulated MIN6 and islets in vitro. In vivo encapsulated MM-labelled MIN6 normalized sugar levels when transplanted into diabetic mice. In vitro MRI demonstrated that single microcapsules as well as clusters of encapsulated MM-labelled cells could be visualised clearly in agarose gel phantoms. In vivo encapsulated MM-labelled MIN6 could be visualised more clearly within the peritoneal cavity as discrete hypointensities using the high power 11.7 T but not the clinical grade 3 T MRI. This study demonstrates a method to noninvasively track encapsulated insulin producing cells by MM labelling and MRI.
Assuntos
Células Secretoras de Insulina/transplante , Transplante das Ilhotas Pancreáticas , Imageamento por Ressonância Magnética/métodos , Imãs , Microesferas , Transplantes/diagnóstico por imagem , Animais , Linhagem Celular Tumoral , Humanos , Técnicas In Vitro , CamundongosRESUMO
Pericapsular fibrotic overgrowth (PFO) is a problem that thwarts full implementation of cellular replacement therapies involving encapsulation in an immunoprotective material, such as for the treatment of diabetes. Mesenchymal stem cells (MSCs) have inherent anti-inflammatory properties. We postulated that coencapsulation of MSCs with the target cells would reduce PFO. A hepatoinsulinoma cell line (HUH7) was used to model human target cells and was coencapsulated with either human or mouse MSCs at different ratios in alginate microcapsules. Viability of encapsulated cells was assessed in vitro and xenografted either intraperitoneally or subcutaneously into C57BL/6 mice. Graft retrieval was performed at 3 weeks posttransplantation and assessed for PFO. Coencapsulation of human MSCs (hMSCs) or mouse MSCs (mMSCs) with HUH7 at different ratios did not alter cell viability in vitro. In vivo data from intraperitoneal infusions showed that PFO for HUH7 cells coencapsulated with hMSCs and mMSCs in a ratio of 1:1 was significantly reduced by â¼30% and â¼35%, respectively, compared to HUH7 encapsulated alone. PFO for HUH7 cells was reduced by â¼51% when the ratio of mMSC/HUH7 was increased to 2:1. Implanting the microcapsules subcutaneously rather than intraperitoneally substantially reduced PFO in all treatment groups, which was most significant in the mMSC/HUH7 2:1 group with a â¼53% reduction in PFO compared with HUH7 alone. Despite the reduced PFO reaction to the individual microcapsules implanted subcutaneously, all microcapsule treatment groups were contained in a vascularized fibrotic pouch at 3 weeks. The presence of MSCs in microcapsules retrieved from these fibrotic pouches improved graft survival with significantly higher cell viabilities of 83.1 ± 0.6% and 79.1 ± 0.8% seen with microcapsules containing mMSC/HUH7 at 2:1 and 1:1 ratios, respectively, compared to HUH7 alone (51.5 ± 0.7%) transplanted subcutaneously. This study showed that coencapsulation of MSCs with target cells has a dose-dependent effect on reducing PFO and improving graft survival when implanted either intraperitoneally or subcutaneously in a stringent xenotransplantation setting.
Assuntos
Sobrevivência de Enxerto , Células-Tronco Mesenquimais/citologia , Transplante Heterólogo , Animais , Diferenciação Celular , Linhagem Celular Tumoral , Sobrevivência Celular , Células Imobilizadas/citologia , Modelos Animais de Doenças , Feminino , Fibrose , Humanos , Implantes Experimentais , Camundongos , Células-Tronco Multipotentes/citologia , Cavidade Peritoneal/citologia , Tela Subcutânea/patologiaRESUMO
Placenta derived human amniotic epithelial cells (hAEC) are an attractive source of stem cells for the generation of hepatocyte-like cells (HLC) for therapeutic applications to treat liver diseases. During hAEC differentiation into HLC, they become increasingly immunogenic, which may result in immune cell-mediated rejection upon transplantation into allogeneic recipients. Placing cells within devices such as alginate microcapsules can prevent immune cell-mediated rejection. The aim of this study was to investigate the characteristics of HLC generated from hAEC and to examine the effects of encapsulation on HLC viability, gene expression, and function. hAEC were differentiated for 4 weeks and evaluated for hepatocyte-specific gene expression and function. Differentiated cells were encapsulated in barium alginate microcapsules and cultured for 7 days and the effect of encapsulation on cell viability, function, and hepatocyte related gene expression was determined. Differentiated cells performed key functions of hepatocytes including urea synthesis, drug-metabolizing cytochrome P450 (CYP)3A4 activity, indocyanine green (ICG) uptake, low-density lipoprotein (LDL) uptake, and exhibited glutathione antioxidant capacity. A number of hepatocyte-related genes involved in fat, cholesterol, bile acid synthesis, and xenobiotic metabolism were also expressed showing that the hAEC had differentiated into HLC. Upon encapsulation, the HLC remained viable for at least 7 days in culture, continued to express genes involved in fat, cholesterol, bile acid, and xenobiotic metabolism and had glutathione antioxidant capacity. CYP3A4 activity and urea synthesis by the encapsulated HLC were higher than that of monolayer HLC cultures. Functional HLC can be derived from hAEC, and HLC can be encapsulated within alginate microcapsules without losing viability or function in vitro.
Assuntos
Âmnio/citologia , Células Epiteliais/fisiologia , Hepatócitos/metabolismo , Alginatos/química , Biomarcadores/metabolismo , Cápsulas , Diferenciação Celular , Sobrevivência Celular , Meios de Cultivo Condicionados , Feminino , Expressão Gênica , Ácido Glucurônico/química , Células Hep G2 , Ácidos Hexurônicos/química , Humanos , Placenta/citologia , GravidezRESUMO
Pericapsular fibrotic overgrowth (PFO) is associated with poor survival of encapsulated pancreatic islets. Modification of the microcapsule membrane aimed at preventing PFO should improve graft survival. This study investigated the effect of macromolecular Corline Heparin Conjugate (CHC) binding on intrinsic properties of alginate microcapsules and assessed the anti-fibrotic potential of this strategy both in vitro and in vivo. CHC was bound to alginate microcapsules using a layer-by-layer approach incorporating avidin. CHC binding to alginate microcapsule was visualized by confocal microscopy. Effects of CHC binding on microcapsule size, strength, and permeability were assessed, and the anti-clotting activity of bound CHC was determined by coagulation assay. Effect of CHC binding on the viability of encapsulated human islets was assessed in vitro, and their ability to function was assessed both in vitro and in vivo in diabetic immunodeficient mice. The potential of bound CHC to reduce PFO was assessed in vivo in different rat transplantation models. Confocal microscopy demonstrated a uniform coating of CHC onto the surface of microcapsules. CHC binding affected neither size nor permeability but significantly increased the tensile strength of alginate microcapsules by ~1.3-fold. The bound CHC molecules were stable and retained their anti-clotting activity for 3 weeks in culture. CHC binding affected neither viability nor function of the encapsulated human islets in vitro. In vivo CHC binding did not compromise islet function, and diabetes was reversed in all recipients with mice exhibiting lower blood glucose levels similar to controls in oral glucose tolerance tests. CHC binding was beneficial and significantly reduced PFO in both syngeneic and allogeneic rat transplantation models by ~65% and ~43%, respectively. In conclusion, our results show a new method to successfully coat CHC on alginate microcapsules and demonstrate its beneficial effect in increasing capsule strength and reduce PFO. This strategy has the potential to improve graft survival of encapsulated human islets.
Assuntos
Alginatos/farmacologia , Materiais Revestidos Biocompatíveis/farmacologia , Heparina/farmacologia , Animais , Coagulação Sanguínea/efeitos dos fármacos , Cápsulas , Adesão Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Fibrose , Ácido Glucurônico/farmacologia , Ácidos Hexurônicos/farmacologia , Humanos , Ilhotas Pancreáticas/efeitos dos fármacos , Ilhotas Pancreáticas/fisiologia , Transplante das Ilhotas Pancreáticas , Masculino , Camundongos , Camundongos SCID , Preservação de Órgãos , Permeabilidade/efeitos dos fármacos , Ratos , Ratos Endogâmicos LewRESUMO
Human hepatocyte transplantation is being trialled in lieu of orthotopic liver transplants for patients with acute and chronic liver diseases. Stem cells that can be differentiated into hepatocyte-like cells may replace human hepatocytes that are difficult to source, culture and in critically short supply. Hepatocyte-like cells have been derived from embryonic and adult tissue stem cells using a combination of growth factors and chemical inducers. Stem cells derived from the human placenta have gained interest due to the unlimited supply of placental tissue, minimal issues associated with stem cell retrieval from placental tissue and the large yields of stem cells that can be obtained. Placental stem cells have been characterised and differentiated into hepatocyte-like cells. This review summarises the literature relating to the differentiation of human placental stem cells into hepatocyte-like cells, the characterisation of the differentiated cells, testing the functionality of the hepatocyte-like cells in pre-clinical animal models of liver disease and biomaterials used for culturing and transplantation of these cells into extra-hepatic sites.
Assuntos
Hepatócitos/citologia , Hepatopatias/terapia , Regeneração Hepática , Placenta/citologia , Células-Tronco/citologia , Adulto , Diferenciação Celular , Feminino , Humanos , GravidezRESUMO
Xenotransplantation of microencapsulated fetal pig islet-like cell clusters (FP ICCs) offers a potential cellular therapy for type 1 diabetes. Although microcapsules prevent direct contact of the host immune system with the xenografted tissue, poor graft survival is still an issue. This study aimed to characterise the nature of the host immune cells present on the engrafted microcapsules and effects on encapsulated FP ICCs that were transplanted into immunocompetent mice. Encapsulated FP ICCs were transplanted into the peritoneal cavity of C57BL/6 mice. Grafts retrieved at days 1, 3, 7, 14 and 21 post-transplantation were analysed for pericapsular fibrotic overgrowth (PFO), cell viability, intragraft porcine gene expression, macrophages, myofibroblasts and intraperitoneal murine cytokines. Graft function was assessed ex vivo by insulin secretion studies. Xenogeneic immune response to encapsulated FP ICCs was associated with enhanced intragraft mRNA expression of porcine antigens MIP-1α, IL-8, HMGB1 and HSP90 seen within the first two weeks post-transplantation. This was associated with the recruitment of host macrophages, infiltration of myofibroblasts and collagen deposition leading to PFO which was evident from day 7 post-transplantation. This was accompanied by a decrease in cell viability and loss of FP ICC architecture. The only pro-inflammatory cytokine detected in the murine peritoneal flushing was TNF-α with levels peaking at day 7 post transplantation. This correlated with the onset of PFO at day 7 implying activated macrophages as its source. The anti-inflammatory cytokines detected were IL-5 and IL-4 with levels peaking at days 1 and 7, respectively. Porcine C-peptide was undetectable at all time points post-transplantation. PFO was absent and murine intraperitoneal cytokines were undetectable when empty microcapsules were transplanted. In conclusion, this study demonstrated that the macrophages are direct effectors of the xenogeneic immune response to encapsulated FP ICCs leading to PFO mediated by a combination of both pro- and anti-inflammatory cytokines.
Assuntos
Antígenos/imunologia , Rejeição de Enxerto/imunologia , Transplante das Ilhotas Pancreáticas/métodos , Ilhotas Pancreáticas/imunologia , Macrófagos/imunologia , Transplante Heterotópico , Alginatos/química , Animais , Biomarcadores/metabolismo , Movimento Celular , Citocinas/biossíntese , Citocinas/imunologia , Feto , Ácido Glucurônico/química , Rejeição de Enxerto/patologia , Ácidos Hexurônicos/química , Imunocompetência , Insulina/metabolismo , Secreção de Insulina , Ilhotas Pancreáticas/citologia , Macrófagos/citologia , Camundongos , Miofibroblastos/citologia , Miofibroblastos/imunologia , Cavidade Peritoneal , Suínos , Transplante HeterólogoRESUMO
Human islet transplantation can provide good glycemic control in diabetic recipients without exogenous insulin. However, a major factor limiting its application is the recipient's need to adhere to life-long immunosuppression, something that has serious side effects. Microencapsulating human islets is a strategy that should prevent rejection of the grafted tissue without the need for anti-rejection drugs. Despite promising studies in various animal models, the encapsulated human islets so far have not made an impact in the clinical setting. Many non-immunological and immunological factors such as biocompatibility, reduced immunoprotection, hypoxia, pericapsular fibrotic overgrowth, effects of the encapsulation process and post-transplant inflammation hamper the successful application of this promising technology. In this review, strategies are discussed to overcome the above-mentioned factors and to enhance the survival and function of encapsulated insulin-producing cells, whether in islets or surrogate ß-cells. Studies at our center show that barium alginate microcapsules are biocompatible in rodents, but not in humans, raising concerns over the use of rodents to predict outcomes. Studies at our center also show that the encapsulation process had little or no effect on the cellular transcriptome of human islets and on their ability to function either in vitro or in vivo. New approaches incorporating further modifications to the microcapsule surface to prevent fibrotic overgrowth are vital, if encapsulated human islets or ß-cell surrogates are to become a viable therapy option for type 1 diabetes in humans.
Assuntos
Diabetes Mellitus Tipo 1/cirurgia , Transplante das Ilhotas Pancreáticas/tendências , Diabetes Mellitus Tipo 1/imunologia , Sobrevivência de Enxerto , Humanos , Terapia de Imunossupressão , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/metabolismo , Transplante das Ilhotas Pancreáticas/imunologia , Transplante das Ilhotas Pancreáticas/métodosRESUMO
OBJECTIVE: Human islets produced at an isolation center are shipped to researchers, usually taking short periods to arrive at their destination. In this study, we investigated whether human islets after long-distance shipment across the Pacific Ocean for 2 to 3 days and encapsulation could maintain their functionality. METHODS: Human islets were encapsulated in alginate and viability assessed using carboxyfluorescein diacetate and propidium iodide. Stimulation index after static glucose incubation was calculated. Streptozotocin-induced diabetic nonobese diabetic/severe combined immunodeficient mice were transplanted with 3000, 2000, or 1000 islet equivalents of nonencapsulated and encapsulated islets and glucose levels monitored. When levels were normal, the graft was retrieved and assessed. RESULTS: Viability of human islets was unaltered after long-distance shipment with a retrieval rate of 88.3% ± 1.9%. After encapsulation, the viability was unchanged (before encapsulation 86.1% ± 0.7% vs after encapsulation 80.8 ± 0.7%) at 11 days after isolation. Function in vitro of nonencapsulated and encapsulated islets was unaffected with a stimulation index of 2.2 and 1.9, respectively. Euglycemia was achieved in 100% mice receiving 2000 and 3000 islet equivalents of nonencapsulated and encapsulated islets, respectively. Capsules retrieved after transplantation was intact, free floating, and contained viable islets. CONCLUSION: Human islets can be shipped safely for long distances without compromising viability and function even after encapsulation and culture.
Assuntos
Diabetes Mellitus Experimental/cirurgia , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas/cirurgia , Coleta de Tecidos e Órgãos , Meios de Transporte , Adulto , Alginatos/química , Animais , Glicemia/metabolismo , Sobrevivência Celular , Células Cultivadas , Chicago , Diabetes Mellitus Experimental/sangue , Feminino , Teste de Tolerância a Glucose , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Humanos , Insulina/metabolismo , Ilhotas Pancreáticas/metabolismo , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , New South Wales , Fatores de TempoRESUMO
Encapsulation of human islets may prevent their immune rejection when transplanted into diabetic recipients. To assist in understanding why clinical outcomes with encapsulated islets were not ideal, we examined the effect of encapsulation on their global gene (mRNA) and selected miRNAs (non-coding (nc)RNA) expression. For functional studies, encapsulated islets were transplanted into peritoneal cavity of diabetic NOD-SCID mice. Genomics analysis and transplantation studies demonstrate that islet origin and isolation centres are a major source of variation in islet quality. In contrast, tissue culture and the encapsulation process had only a minimal effect, and did not affect islet viability. Microarray analysis showed that as few as 29 genes were up-regulated and 2 genes down-regulated (cut-off threshold 0.1) by encapsulation. Ingenuity analysis showed that up-regulated genes were involved mostly in inflammation, especially chemotaxis, and vascularisation. However, protein expression of these factors was not altered by encapsulation, raising doubts about the biosignificance of the gene changes. Encapsulation had no effect on levels of islet miRNAs. In vivo studies indicate differences among the centres in the quality of the islets isolated. We conclude that microencapsulation of human islets with barium alginate has little effect on their transcriptome.
Assuntos
Alginatos/farmacologia , Ilhotas Pancreáticas/efeitos dos fármacos , Transcriptoma , Alginatos/química , Animais , Sequência de Bases , Western Blotting , Primers do DNA , Regulação para Baixo/efeitos dos fármacos , Perfilação da Expressão Gênica , Ácido Glucurônico/química , Ácido Glucurônico/farmacologia , Ácidos Hexurônicos/química , Ácidos Hexurônicos/farmacologia , Humanos , Insulina/metabolismo , Secreção de Insulina , Ilhotas Pancreáticas/metabolismo , Transplante das Ilhotas Pancreáticas , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Análise de Sequência com Séries de Oligonucleotídeos , Análise de Componente Principal , Reação em Cadeia da Polimerase em Tempo Real , Regulação para Cima/efeitos dos fármacosRESUMO
Despite encouraging results in animal models, the transplantation of microencapsulated islets into humans has not yet reached the therapeutic level. Recent clinical trials using microencapsulated human islets in barium alginate showed the presence of dense fibrotic overgrowth around the microcapsules with no viable islets. The major reason for this is limited understanding of what occurs when encapsulated human islets are allografted. This warrants the need for a suitable small animal model. In this study, we investigated the usefulness of NOD/SCID mice reconstituted with human PBMCs (called humanized NOD/SCID mice) as a preclinical model. In this model, human T cell engraftment could be achieved, and CD45+ cells were observed in the spleen and peripheral blood. Though the engrafted T cells caused a small fibrotic overgrowth around the microencapsulated human islets, this failed to stop the encapsulated islets from functioning in the diabetic recipient mice. The ability of encapsulated islets to survive in this mouse model might partly be attributed to the presence of Th2 cytokines IL-4 and IL-10, which are known to induce graft tolerance. In conclusion, this study showed that the hu-NOD/SCID mouse is not a suitable preclinical model to study the allograft rejection mechanisms of encapsulated human islets. As another result, the maintained viability of transplanted islets on the NOD/SCID background emphasized a critical role of protective mechanisms in autoimmune diabetes transplanted subjects due to specific immunoregulatory effects provided by IL-4 and IL-10.