Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Hum Brain Mapp ; 44(6): 2345-2364, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36715216

RESUMO

High-altitude indoctrination (HAI) trains individuals to recognize symptoms of hypoxia by simulating high-altitude conditions using normobaric (NH) or hypobaric (HH) hypoxia. Previous studies suggest that despite equivalent inspired oxygen levels, physiological differences could exist between these conditions. In particular, differences in neurophysiological responses to these conditions are not clear. Our study aimed to investigate correlations between oxygen saturation (SpO2 ) and neural responses in NH and HH. We recorded 5-min of resting-state eyes-open electroencephalogram (EEG) and SpO2 during control, NH, and HH conditions from 13 participants. We applied a multivariate framework to characterize correlations between SpO2 and EEG measures (spectral power and multiscale entropy [MSE]), within each participant and at the group level. Participants were desaturating during the first 150 s of NH versus steadily desaturated in HH. We considered the entire time interval, first and second half intervals, separately. All the conditions were characterized by statistically significant participant-specific patterns of EEG-SpO2 correlations. However, at the group level, the desaturation period expressed a robust pattern of these correlations across frequencies and brain locations. Specifically, the first 150 s of NH during desaturation differed significantly from the other conditions with negative absolute alpha power-SpO2 correlations and positive MSE-SpO2 correlations. Once steadily desaturated, NH and HH had no significant differences in EEG-SpO2 correlations. Our findings indicate that the desaturating phase of hypoxia is a critical period in HAI courses, which would require developing strategies for mitigating the hypoxic stimulus in a real-world situation.


Assuntos
Hipóxia , Saturação de Oxigênio , Humanos , Oxigênio , Eletroencefalografia
2.
Cereb Cortex ; 30(9): 5166-5179, 2020 07 30.
Artigo em Inglês | MEDLINE | ID: mdl-32368779

RESUMO

Autism spectrum disorder (ASD) is diagnosed more often in males with a ratio of 1:4 females/males. This bias is even stronger in neuroimaging studies. There is a growing evidence suggesting that local connectivity and its developmental trajectory is altered in ASD. Here, we aim to investigate how local connectivity and its age-related trajectories vary with ASD in both males and females. We used resting-state fMRI data from the ABIDE I and II repository: males (n = 102) and females (n = 92) with ASD, and typically developing males (n = 104) and females (n = 92) aged between 6 and 26. Local connectivity was quantified as regional homogeneity. We found increases in local connectivity in participants with ASD in the somatomotor and limbic networks and decreased local connectivity within the default mode network. These alterations were more pronounced in females with ASD. In addition, the association between local connectivity and ASD symptoms was more robust in females. Females with ASD had the most distinct developmental trajectories of local connectivity compared with other groups. Overall, our findings of more pronounced local connectivity alterations in females with ASD could indicate a greater etiological load for an ASD diagnosis in this group congruent with the female protective effect hypothesis.


Assuntos
Transtorno do Espectro Autista/fisiopatologia , Vias Neurais/fisiopatologia , Caracteres Sexuais , Adolescente , Mapeamento Encefálico/métodos , Criança , Feminino , Humanos , Imageamento por Ressonância Magnética/métodos , Masculino
3.
Hum Brain Mapp ; 41(2): 388-400, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31587465

RESUMO

Evidence indicates better cognitive and behavioral outcomes for females born very preterm (≤32 weeks gestation) compared to males, but the neurophysiology underlying this apparent resiliency of the female brain remains poorly understood. Here we test the hypothesis that very preterm males express more pronounced connectivity alterations as a reflection of higher male vulnerability. Resting state MEG recordings, neonatal and psychometric data were collected from 100 children at age 8 years: very preterm boys (n = 27), very preterm girls (n = 34), full-term boys (n = 15) and full-term girls (n = 24). Neuromagnetic source dynamics were reconstructed from 76 cortical brain regions. Functional connectivity was estimated using inter-regional phase-synchronization. We performed a series of multivariate analyses to test for differences across groups as well as to explore relationships between deviations in functional connectivity and psychometric scores and neonatal factors for very preterm children. Very preterm boys displayed significantly higher (p < .001) absolute deviation from average connectivity of same-sex full-term group, compared to very preterm girls versus full-term girls. In the connectivity comparison between very preterm and full-term groups separately for boys and girls, significant group differences (p < .05) were observed for boys, but not girls. Sex differences in connectivity (p < .01) were observed in very preterm children but not in full-term groups. Our findings indicate that very preterm boys have greater alterations in resting neurophysiological network communication than girls. Such uneven brain communication disruption in very preterm boys and girls suggests that stronger connectivity alterations might contribute to male vulnerability in long-term behavioral and cognitive outcome.


Assuntos
Córtex Cerebral/fisiologia , Desenvolvimento Infantil/fisiologia , Sincronização Cortical/fisiologia , Neuroimagem Funcional , Lactente Extremamente Prematuro/fisiologia , Magnetoencefalografia , Caracteres Sexuais , Criança , Feminino , Humanos , Recém-Nascido , Masculino
4.
Neuroimage ; 190: 182-190, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-29355768

RESUMO

Neuroimaging studies of Autism Spectrum Disorder (ASD) have yielded inconsistent results indicating either increases or decreases in functional connectivity, or both. Recent findings suggest that these seemingly divergent results might be underpinned by greater inter-individual variability in brain network connectivity in ASD. We tested the hypothesis that the spatial patterns of intrinsic connectivity networks (ICNs) are more idiosyncratic in ASD, and demonstrated that this increased variability is associated with symptomatology. We estimated whole brain functional connectivity based on resting state functional magnetic resonance imaging (fMRI) data obtained from the Autism Brain Imaging Data Exchange I & II (ABIDE I & II) repository: 422 (69 females) participants with ASD and 424 (59 females) typically developing (TD) participants between 6 and 30 years of age. We clustered individuals' patterns of resting state functional connectivity into seven networks, each representing an ICN, and assessed the heterogeneity of each vertex on the cortical surface across individuals in terms of its incorporation into a particular ICN. We found that the incorporation of individual anatomical locations (vertices) to a common network was less consistent across individuals in ASD, indicating a more idiosyncratic organization of ICNs in the ASD brain. This spatial shifting effect was particularly pronounced in the Sensory-Motor Network (SMN) and the Default Mode Network (DMN). We also found that this idiosyncrasy in large-scale brain network organization was correlated with ASD symptomatology (ADOS). These results support the view that idiosyncratic functional connectivity is a hallmark of the ASD brain. We provide the first evidence that the anatomical organization of ICNs is idiosyncratic in ASD, as well as providing evidence that such abnormalities in brain network organization may contribute to the symptoms of ASD.


Assuntos
Transtorno do Espectro Autista/fisiopatologia , Córtex Cerebral/fisiopatologia , Conectoma/métodos , Rede Nervosa/fisiopatologia , Adolescente , Adulto , Transtorno do Espectro Autista/diagnóstico por imagem , Córtex Cerebral/diagnóstico por imagem , Criança , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Rede Nervosa/diagnóstico por imagem , Adulto Jovem
5.
Hum Brain Mapp ; 40(3): 987-1000, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30311349

RESUMO

It has been proposed that autism spectrum disorder (ASD) may be characterized by an extreme male brain (EMB) pattern of brain development. Here, we performed the first investigation of how age-related changes in functional brain connectivity may be expressed differently in females and males with ASD. We analyzed resting-state functional magnetic resonance imaging data of 107 typically developing (TD) females, 114 TD males, 104 females, and 115 males with ASD (6-26 years) from the autism brain imaging data exchange repository. We explored how interhemispheric homotopic connectivity and its maturational curvatures change across groups. Differences between ASD and TD and between females and males with ASD were observed for the rate of changes in connectivity in the absence of overall differences in connectivity. The largest portion of variance in age-related changes in connectivity was described through similarities between TD males, ASD males, and ASD females, in contrast to TD females. We found that shape of developmental curvature is associated with symptomatology in both males and females with ASD. We demonstrated that females and males with ASD tended to follow the male pattern of developmental changes in interhemispheric connectivity, supporting the EMB theory of ASD.


Assuntos
Transtorno do Espectro Autista/patologia , Encéfalo/crescimento & desenvolvimento , Encéfalo/patologia , Vias Neurais/crescimento & desenvolvimento , Vias Neurais/patologia , Adolescente , Adulto , Criança , Feminino , Humanos , Imageamento por Ressonância Magnética , Masculino , Caracteres Sexuais , Adulto Jovem
6.
Epilepsia ; 60(9): 1849-1860, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31407333

RESUMO

OBJECTIVE: We analyzed the features of fast oscillations (FOs) and connectivity in hypsarrhythmia to identify biomarkers for predicting seizure outcomes after total corpus callosotomy (TCC) in children with pharmacoresistant infantile spasms (IS). We hypothesize that the power of FOs and connectivity of slow waves in hypsarrhythmia would indicate the prognosis of IS. METHOD: We retrospectively identified 42 children with pharmacoresistant IS who underwent TCC from 2009 to 2014 at Nagasaki Medical Center. We collected preoperative hypsarrhythmia for 200 seconds from each child. Children were categorized into three groups with interictal epileptic discharges on EEG at 6 months after TCC: group A, no epileptic discharge; group B, lateralized epileptic discharges; and group C; bilateral epileptic discharges. We analyzed spectral power and phase synchronization in preoperative hypsarrhythmia among the three groups. RESULTS: We found 10 children in group A, 10 children in group B, and 22 children in group C. All group A and 1 in group B achieved seizure freedom after TCC. Six (67%) of 9 group B children who underwent further surgeries achieved seizure freedom. Ten (45%) of group C children had seizure reduction >50% after TCC, and 13 (87%) of 15 children who underwent further surgeries had residual seizures. The clinical profiles of the three groups did not differ significantly. The power of FOs (≥45 Hz) in hypsarrhythmia was significantly stronger in group C at the midline and temporal regions than in groups B and A (P = .014). The connectivity of theta (4-9 Hz) and FOs (29-70 Hz) tended to increase in group C, compared with the increased connectivity of 1-2 Hz in group A (P = .08). SIGNIFICANCE: The increased power and connectivity of FOs in hypsarrhythmia may correlate with pharmacoresistant and surgically resistant seizures in IS. The existence and connectivity of FOs are associated with unilateral/bilateral cortical epileptogenicity in hypsarrhythmia. Prominent slow waves and connectivity without FOs might correlate with seizure freedom after TCC. Modulation of the callosal system with subcortical/cortical epileptic discharges might play a role in generating hypsarrhythmia and IS.


Assuntos
Ondas Encefálicas/fisiologia , Encéfalo/cirurgia , Corpo Caloso/cirurgia , Espasmos Infantis/cirurgia , Encéfalo/fisiopatologia , Pré-Escolar , Corpo Caloso/fisiopatologia , Eletroencefalografia , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Espasmos Infantis/fisiopatologia , Resultado do Tratamento
7.
J Child Psychol Psychiatry ; 60(9): 975-987, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30805942

RESUMO

BACKGROUND: Children born very preterm often display selective cognitive difficulties at school age even in the absence of major brain injury. Alterations in neurophysiological activity underpinning such difficulties, as well as their relation to specific aspects of adverse neonatal experience, remain poorly understood. In the present study, we examined interregional connectivity and spectral power in very preterm children at school age, and their relationship with clinical neonatal variables and long-term outcomes (IQ, executive functions, externalizing/internalizing behavior, visual-motor integration). METHODS: We collected resting state magnetoencephalographic (MEG) and psychometric data from a cohort at the age of 8 years followed prospectively since birth, which included three groups: Extremely Low Gestational Age (ELGA, 24-28 weeks GA n = 24, age 7.7 ± 0.38, 10 girls), Very Low Gestational Age (VLGA, 29-32 weeks GA n = 37, age 7.7 ± 0.39, 24 girls), and full-term children (38-41 weeks GA n = 39, age 7.9 ± 1.02, 24 girls). Interregional phase synchrony and spectral power were tested for group differences, and associations with neonatal and outcome variables were examined using mean-centered and behavioral Partial Least Squares (PLS) analyses, respectively. RESULTS: We found greater connectivity in the theta band in the ELGA group compared to VLGA and full-term groups, primarily involving frontal connections. Spectral power analysis demonstrated overall lower power in the ELGA and VLGA compared to full-term group. PLS indicated strong associations between neurophysiological connectivity at school age, adverse neonatal experience and cognitive performance, and behavior. Resting spectral power was associated only with behavioral scores. CONCLUSIONS: Our findings indicate significant atypicalities of neuromagnetic brain activity and connectivity in very preterm children at school age, with alterations in connectivity mainly observed only in the ELGA group. We demonstrate a significant relationship between connectivity, adverse neonatal experience, and long-term outcome, indicating that the disruption of developing neurophysiological networks may mediate relationships between neonatal events and cognitive and behavioral difficulties at school age.


Assuntos
Sintomas Comportamentais/fisiopatologia , Sincronização Cortical/fisiologia , Função Executiva/fisiologia , Lobo Frontal/fisiopatologia , Lactente Extremamente Prematuro/fisiologia , Inteligência/fisiologia , Rede Nervosa/fisiopatologia , Desempenho Psicomotor/fisiologia , Ritmo Teta/fisiologia , Criança , Estudos de Coortes , Feminino , Idade Gestacional , Humanos , Magnetoencefalografia , Masculino
8.
Ann Neurol ; 81(2): 199-211, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27977875

RESUMO

OBJECTIVE: There is gathering consensus that altered connectivity is a hallmark of the autistic brain. This includes atypical neural oscillations and their coordination across brain regions, which are understood to mediate information processing and integration. It remains unclear whether and how connectivity in various neurophysiological frequency ranges develops atypically in autism spectrum disorder (ASD). METHODS: To address this in a cross-sectional sample, we recorded resting-state magnetoencephalography from 134 children and adolescents with and without ASD, and calculated resting spectral power and inter-regional synchrony (functional connectivity). RESULTS: Although no overall group differences were observed, significant alterations in linear and nonlinear age-related changes in resting oscillatory power and network synchrony were found. These differences were frequency- and region-specific and implicated brain systems thought to play a prominent role in ASD, such as the frontal cortex and cerebellum. We also found correlations between Autism Diagnostic Observation Schedule scores and the degree to which connectivity in cerebellar networks is "idiosyncratic" in an individual with autism. INTERPRETATION: We provide the first evidence that it is the curvatures of maturational changes in neurophysiological oscillations and synchrony, rather than disturbances in a particular direction, that characterize the brain function in individuals with ASD. Moreover, the patterns of idiosyncratic distortions of network synchrony relative to the group curve are associated with behavioral symptoms of ASD. Ann Neurol 2017;81:199-211.


Assuntos
Transtorno do Espectro Autista/fisiopatologia , Cerebelo/fisiopatologia , Sincronização de Fases em Eletroencefalografia/fisiologia , Lobo Frontal/fisiopatologia , Magnetoencefalografia/métodos , Rede Nervosa/fisiopatologia , Adolescente , Criança , Conectoma , Estudos Transversais , Feminino , Humanos , Masculino
9.
PLoS Comput Biol ; 12(12): e1004914, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27906973

RESUMO

Accurate means to detect mild traumatic brain injury (mTBI) using objective and quantitative measures remain elusive. Conventional imaging typically detects no abnormalities despite post-concussive symptoms. In the present study, we recorded resting state magnetoencephalograms (MEG) from adults with mTBI and controls. Atlas-guided reconstruction of resting state activity was performed for 90 cortical and subcortical regions, and calculation of inter-regional oscillatory phase synchrony at various frequencies was performed. We demonstrate that mTBI is associated with reduced network connectivity in the delta and gamma frequency range (>30 Hz), together with increased connectivity in the slower alpha band (8-12 Hz). A similar temporal pattern was associated with correlations between network connectivity and the length of time between the injury and the MEG scan. Using such resting state MEG network synchrony we were able to detect mTBI with 88% accuracy. Classification confidence was also correlated with clinical symptom severity scores. These results provide the first evidence that imaging of MEG network connectivity, in combination with machine learning, has the potential to accurately detect and determine the severity of mTBI.


Assuntos
Lesões Encefálicas Traumáticas/diagnóstico por imagem , Mapeamento Encefálico/métodos , Encéfalo/diagnóstico por imagem , Magnetoencefalografia/métodos , Processamento de Sinais Assistido por Computador , Adulto , Encéfalo/fisiopatologia , Lesões Encefálicas Traumáticas/fisiopatologia , Análise por Conglomerados , Humanos , Masculino , Adulto Jovem
10.
Cereb Cortex ; 25(9): 2815-27, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24770713

RESUMO

Autism spectrum disorder (ASD) includes deficits in social cognition, communication, and executive function. Recent neuroimaging studies suggest that ASD disrupts the structural and functional organization of brain networks and, presumably, how they generate information. Here, we relate deficits in an aspect of cognitive control to network-level disturbances in information processing. We recorded magnetoencephalography while children with ASD and typically developing controls performed a set-shifting task designed to test mental flexibility. We used multiscale entropy (MSE) to estimate the rate at which information was generated in a set of sources distributed across the brain. Multivariate partial least-squares analysis revealed 2 distributed networks, operating at fast and slow time scales, that respond completely differently to set shifting in ASD compared with control children, indicating disrupted temporal organization within these networks. Moreover, when typically developing children engaged these networks, they achieved faster reaction times. When children with ASD engaged these networks, there was no improvement in performance, suggesting that the networks were ineffective in children with ASD. Our data demonstrate that the coordination and temporal organization of large-scale neural assemblies during the performance of cognitive control tasks is disrupted in children with ASD, contributing to executive function deficits in this group.


Assuntos
Transtorno Autístico/complicações , Transtorno Autístico/patologia , Encéfalo/patologia , Comportamento de Escolha/fisiologia , Processos Mentais/fisiologia , Adolescente , Algoritmos , Atenção/fisiologia , Estudos de Casos e Controles , Criança , Eletroencefalografia , Entropia , Potenciais Evocados/fisiologia , Feminino , Humanos , Magnetoencefalografia , Masculino , Vias Neurais/patologia , Testes Neuropsicológicos , Percepção Visual
11.
J Cogn Neurosci ; 26(10): 2416-30, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24702450

RESUMO

Given their unique connectivity, a primary function of brain networks must be to transfer and integrate information. Therefore, the way in which information is integrated by individual nodes of the network may be an informative aspect of cognitive processing. Here we present a method inspired by telecommunications research that utilizes time-frequency fluctuations of neural activity to infer how information is integrated by individual nodes of the network. We use a queueing theoretical model to interpret empirical data in terms of information processing and integration. In particular, we demonstrate, in participants aged from 6 to 41 years, that the well-known face inversion phenomenon may be explained in terms of information integration. Our model suggests that inverted faces may be associated with shorter and more frequent neural integrative stages, indicating fractured processing and consistent with the notion that inverted faces are perceived by parts. Conversely, our model suggests that upright faces may be associated with a smaller number of sustained episodes of integration, indicating more involved processing, akin to holistic and configural processing. These differences in how upright and inverted faces are processed became more pronounced during development, indicating a gradual specialization for face perception. These effects were robustly expressed in the right fusiform gyrus (all groups), as well as right parahippocampal gyrus (children and adolescents only) and left inferior temporal cortex (adults only).


Assuntos
Envelhecimento , Potenciais Evocados/fisiologia , Face , Dinâmica não Linear , Reconhecimento Visual de Modelos/fisiologia , Lobo Temporal/fisiologia , Adolescente , Adulto , Criança , Eletroencefalografia , Feminino , Humanos , Magnetoencefalografia , Masculino , Modelos Neurológicos , Estimulação Luminosa , Fatores de Tempo , Adulto Jovem
12.
J Cogn Neurosci ; 26(1): 41-53, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23984942

RESUMO

Episodic memory and semantic memory produce very different subjective experiences yet rely on overlapping networks of brain regions for processing. Traditional approaches for characterizing functional brain networks emphasize static states of function and thus are blind to the dynamic information processing within and across brain regions. This study used information theoretic measures of entropy to quantify changes in the complexity of the brain's response as measured by magnetoencephalography while participants listened to audio recordings describing past personal episodic and general semantic events. Personal episodic recordings evoked richer subjective mnemonic experiences and more complex brain responses than general semantic recordings. Critically, we observed a trade-off between the relative contribution of local versus distributed entropy, such that personal episodic recordings produced relatively more local entropy whereas general semantic recordings produced relatively more distributed entropy. Changes in the relative contributions of local and distributed entropy to the total complexity of the system provides a potential mechanism that allows the same network of brain regions to represent cognitive information as either specific episodes or more general semantic knowledge.


Assuntos
Estimulação Acústica/métodos , Encéfalo/fisiologia , Memória Episódica , Processos Mentais/fisiologia , Desempenho Psicomotor/fisiologia , Semântica , Adulto , Feminino , Humanos , Masculino , Estimulação Luminosa/métodos , Estudos Prospectivos
13.
Neuroimage ; 103: 267-279, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25264228

RESUMO

Major Depressive Disorder (MDD) is characterized by rumination. Prior research suggests that resting-state brain activation reflects rumination when depressed individuals are not task engaged. However, no study has directly tested this. Here we investigated whether resting-state epochs differ from induced ruminative states for healthy and depressed individuals. Most previous research on resting-state networks comes from seed-based analyses with the posterior cingulate cortex (PCC). By contrast, we examined resting state connectivity by using the complete multivariate connectivity profile (i.e., connections across all brain nodes) and by comparing these results to seeded analyses. We find that unconstrained resting-state intervals differ from active rumination states in strength of connectivity and that overall connectivity was higher for healthy vs. depressed individuals. Relationships between connectivity and subjective mood (i.e., behavior) were strongly observed during induced rumination epochs. Furthermore, connectivity patterns that related to subjective mood were strikingly different for MDD and healthy control (HC) groups suggesting different mood regulation mechanisms.


Assuntos
Encéfalo/fisiopatologia , Transtorno Depressivo Maior/fisiopatologia , Vias Neurais/fisiopatologia , Descanso/fisiologia , Pensamento/fisiologia , Adulto , Feminino , Humanos , Imageamento por Ressonância Magnética , Adulto Jovem
14.
Artigo em Inglês | MEDLINE | ID: mdl-38768007

RESUMO

Electroencephalogram (EEG) is widely used in basic and clinical neuroscience to explore neural states in various populations, and classifying these EEG recordings is a fundamental challenge. While machine learning shows promising results in classifying long multivariate time series, optimal prediction models and feature extraction methods for EEG classification remain elusive. Our study addressed the problem of EEG classification under the framework of brain age prediction, applying a deep learning model on EEG time series. We hypothesized that decomposing EEG signals into oscillatory modes would yield more accurate age predictions than using raw or canonically frequency-filtered EEG. Specifically, we employed multivariate intrinsic mode functions (MIMFs), an empirical mode decomposition (EMD) variant based on multivariate iterative filtering (MIF), with a convolutional neural network (CNN) model. Testing a large dataset of routine clinical EEG scans (n = 6540) from patients aged 1 to 103 years, we found that an ad-hoc CNN model without fine-tuning could reasonably predict brain age from EEGs. Crucially, MIMF decomposition significantly improved performance compared to canonical brain rhythms (from delta to lower gamma oscillations). Our approach achieved a mean absolute error (MAE) of 13.76 ± 0.33 and a correlation coefficient of 0.64 ± 0.01 in brain age prediction over the entire lifespan. Our findings indicate that CNN models applied to EEGs, preserving their original temporal structure, remains a promising framework for EEG classification, wherein the adaptive signal decompositions such as the MIF can enhance CNN models' performance in this task.


Assuntos
Encéfalo , Eletroencefalografia , Redes Neurais de Computação , Humanos , Eletroencefalografia/métodos , Adulto Jovem , Adulto , Criança , Idoso , Adolescente , Lactente , Pré-Escolar , Pessoa de Meia-Idade , Idoso de 80 Anos ou mais , Masculino , Feminino , Encéfalo/fisiologia , Algoritmos , Aprendizado Profundo , Análise Multivariada , Aprendizado de Máquina , Processamento de Sinais Assistido por Computador
15.
Artigo em Inglês | MEDLINE | ID: mdl-37018726

RESUMO

Routine clinical EEG is a standard test used for the neurological evaluation of patients. A trained specialist interprets EEG recordings and classifies them into clinical categories. Given time demands and high inter-reader variability, there is an opportunity to facilitate the evaluation process by providing decision support tools that can classify EEG recordings automatically. Classifying clinical EEG is associated with several challenges: classification models are expected to be interpretable; EEGs vary in duration and EEGs are recorded by multiple technicians operating various devices. Our study aimed to test and validate a framework for EEG classification which satisfies these requirements by transforming EEG into unstructured text. We considered a highly heterogeneous and extensive sample of routine clinical EEGs (n = 5785), with a wide range of participants aged between 15 and 99 years. EEG scans were recorded at a public hospital, according to 10/20 electrode positioning with 20 electrodes. The proposed framework was based on symbolizing EEG signals and adapting a previously proposed method from natural language processing (NLP) to break symbols into words. Specifically, we symbolized the multichannel EEG time series and applied a byte-pair encoding (BPE) algorithm to extract a dictionary of the most frequent patterns (tokens) reflecting the variability of EEG waveforms. To demonstrate the performance of our framework, we used newly-reconstructed EEG features to predict patients' biological age with a Random Forest regression model. This age prediction model achieved a mean absolute error of 15.7 years. We also correlated tokens' occurrence frequencies with age. The highest correlations between the frequencies of tokens and age were observed at frontal and occipital EEG channels. Our findings demonstrated the feasibility of applying an NLP-based approach to classifying routine clinical EEG. Notably, the proposed algorithm could be instrumental in classifying clinical EEG with minimal preprocessing and identifying clinically-relevant short events, such as epileptic spikes.

16.
Brain Sci ; 13(10)2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37891816

RESUMO

Autism Spectrum Disorder (ASD) is characterized by both atypical functional brain connectivity and cognitive challenges across multiple cognitive domains. The relationship between task-dependent brain connectivity and cognitive abilities, however, remains poorly understood. In this study, children with ASD and their typically developing (TD) peers engaged in semantic and pragmatic language tasks while their task-dependent brain connectivity was mapped and compared. A multivariate statistical approach revealed associations between connectivity and psychometric assessments of relevant cognitive abilities. While both groups exhibited brain-behavior correlations, the nature of these associations diverged, particularly in the directionality of overall correlations across various psychometric categories. Specifically, greater disparities in functional connectivity between the groups were linked to larger differences in Autism Questionnaire, BRIEF, MSCS, and SRS-2 scores but smaller differences in WASI, pragmatic language, and Theory of Mind scores. Our findings suggest that children with ASD utilize distinct neural communication patterns for language processing. Although networks recruited by children with ASD may appear less efficient than those typically engaged, they could serve as compensatory mechanisms for potential disruptions in conventional brain networks.

17.
Sci Rep ; 13(1): 18021, 2023 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-37865721

RESUMO

Normobaric hypoxia (NH) and hypobaric hypoxia (HH) are both used to train aircraft pilots to recognize symptoms of hypoxia. NH (low oxygen concentration) training is often preferred because it is more cost effective, simpler, and safer than HH. It is unclear, however, whether NH is neurophysiologically equivalent to HH (high altitude). Previous studies have shown that neural oscillations, particularly those in the alpha band (8-12 Hz), are impacted by hypoxia. Attention tasks have been shown to reliably modulate alpha oscillations, although the neurophysiological impacts of hypoxia during cognitive processing remains poorly understood. To address this we investigated induced and evoked power alongside physiological data while participants performed an attention task during control (normobaric normoxia or NN), NH (fraction of inspired oxygen = 12.8%, partial pressure of inspired oxygen = 87.2 mmHg), and HH (3962 m, partial pressure of inspired oxygen = 87.2 mmHg) conditions inside a hypobaric chamber. No significant differences between NH and HH were found in oxygen saturation, end tidal gases, breathing rate, middle cerebral artery velocity and blood pressure. Induced alpha power was significantly decreased in NH and HH when compared to NN. Participants in the HH condition showed significantly increased induced lower-beta power and evoked higher-beta power, compared with the NH and NN conditions, indicating that NH and HH differ in their impact on neurophysiological activity supporting cognition. NH and HH were found not to be neurophysiologically equivalent as electroencephalography was able to differentiate NH from HH.


Assuntos
Hipóxia , Oxigênio , Humanos , Taxa Respiratória , Artéria Cerebral Média , Pressão Sanguínea , Altitude
18.
J Neurosci ; 31(17): 6405-13, 2011 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-21525281

RESUMO

A number of studies have characterized the changes in variability of brain signals with brain maturation from the perspective of considering the human brain as a complex system. Specifically, it has been shown that complexity of brain signals increases in development. On one hand, such an increase in complexity can be attributed to more specialized and differentiated brain regions able to express a higher repertoire of mental microstates. On the other hand, it can be explained by increased integration between widely distributed neuronal populations and establishment of new connections. The goal of this study was to see which of these two mechanisms is dominant, accounting for the previously observed increase in signal complexity. Using information-theoretic tools based on scalp-recorded EEG measurements, we examined the trade-off between local and distributed variability of brain signals in infants and children separated into age groups of 1-2, 2-8, 9-24, and 24-66 months old. We found that developmental changes were characterized by a decrease in the amount of information processed locally, with a peak in alpha frequency range. This effect was accompanied by an increase in the variability of brain signals processed as a distributed network. Complementary analysis of phase locking revealed an age-related pattern of increased synchronization in the lower part of the spectrum, up to the alpha rhythms. At the same time, we observed the desynchronization effects associated with brain development in the higher beta to lower gamma range.


Assuntos
Mapeamento Encefálico , Ondas Encefálicas/fisiologia , Encéfalo/fisiologia , Desenvolvimento Infantil/fisiologia , Detecção de Sinal Psicológico/fisiologia , Estimulação Acústica , Fatores Etários , Encéfalo/anatomia & histologia , Criança , Pré-Escolar , Eletroencefalografia/métodos , Entropia , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Modelos Neurológicos , Rede Nervosa/crescimento & desenvolvimento , Estimulação Luminosa/métodos
19.
Neuroimage ; 62(1): 67-76, 2012 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-22521477

RESUMO

Non-invasive measuring methods such as EEG/MEG, fMRI and DTI are increasingly utilised to extract quantitative information on functional and anatomical connectivity in the human brain. These methods typically register their data in Euclidean space, so that one can refer to a particular activity pattern by specifying its spatial coordinates. Since each of these methods has limited resolution in either the time or spatial domain, incorporating additional data, such as those obtained from invasive animal studies, would be highly beneficial to link structure and function. Here we describe an approach to spatially register all cortical brain regions from the macaque structural connectivity database CoCoMac, which contains the combined tracing study results from 459 publications (http://cocomac.g-node.org). Brain regions from 9 different brain maps were directly mapped to a standard macaque cortex using the tool Caret (Van Essen and Dierker, 2007). The remaining regions in the CoCoMac database were semantically linked to these 9 maps using previously developed algebraic and machine-learning techniques (Bezgin et al., 2008; Stephan et al., 2000). We analysed neural connectivity using several graph-theoretical measures to capture global properties of the derived network, and found that Markov Centrality provides the most direct link between structure and function. With this registration approach, users can query the CoCoMac database by specifying spatial coordinates. Availability of deformation tools and homology evidence then allow one to directly attribute detailed anatomical animal data to human experimental results.


Assuntos
Encéfalo/anatomia & histologia , Bases de Dados Factuais/normas , Macaca/anatomia & histologia , Modelos Anatômicos , Modelos Neurológicos , Rede Nervosa/anatomia & histologia , Técnica de Subtração , Animais , Simulação por Computador , Interpretação de Imagem Assistida por Computador/métodos , Valores de Referência , Software
20.
PLoS Comput Biol ; 7(6): e1002065, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21673866

RESUMO

The complex connectivity of the cerebral cortex is a topic of much study, yet the link between structure and function is still unclear. The processing capacity and throughput of information at individual brain regions remains an open question and one that could potentially bridge these two aspects of neural organization. The rate at which information is emitted from different nodes in the network and how this output process changes under different external conditions are general questions that are not unique to neuroscience, but are of interest in multiple classes of telecommunication networks. In the present study we show how some of these questions may be addressed using tools from telecommunications research. An important system statistic for modeling and performance evaluation of distributed communication systems is the time between successive departures of units of information at each node in the network. We describe a method to extract and fully characterize the distribution of such inter-departure times from the resting-state electroencephalogram (EEG). We show that inter-departure times are well fitted by the two-parameter Gamma distribution. Moreover, they are not spatially or neurophysiologically trivial and instead are regionally specific and sensitive to the presence of sensory input. In both the eyes-closed and eyes-open conditions, inter-departure time distributions were more dispersed over posterior parietal channels, close to regions which are known to have the most dense structural connectivity. The biggest differences between the two conditions were observed at occipital sites, where inter-departure times were significantly more variable in the eyes-open condition. Together, these results suggest that message departure times are indicative of network traffic and capture a novel facet of neural activity.


Assuntos
Eletroencefalografia , Modelos Neurológicos , Análise de Ondaletas , Córtex Cerebral/fisiologia , Criança , Análise por Conglomerados , Feminino , Humanos , Análise dos Mínimos Quadrados , Masculino , Telecomunicações
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA