RESUMO
Background: The association between early-life lower respiratory tract infection (LRTI) and asthma is well established. Knowledge about bronchial hyperresponsiveness (BHR) and asthma after metapneumovirus (MPV) LRTI is scarce. The aim of this study was to assess BHR and current asthma in school-aged children after hospital admission for early-life LRTI with MPV, and to compare with more well-known viruses, rhinovirus (RV) and respiratory syncytial virus (RSV), and with controls. Methods: A cohort consisting of children admitted for LRTI and controls was followed-up at school age with a clinical research assessment and lung function tests, including a methacholine provocation test. Current asthma was defined based on objective variable airway obstruction and clinical symptoms. BHR and asthma were compared according to viral groups. Results: 135 children (median age 9.3â years) were included (16 MPV, 34 RV, 51 RSV, 13 mixed infections and 21 controls). Compared with controls there was increased BHR after MPV and RV LRTI (provocative dose causing a 20% fall in forced expiratory volume in 1â s and dose-response slope; p<0.05). Using Kaplan-Meier statistics, BHR was increased for MPV compared with both controls and RSV (p=0.02 and p=0.01). The proportion of children with current asthma at follow-up was higher in the LRTI children compared with the controls (46% versus 24%; p=0.06). Among children who had undergone MPV and RV infection, 50% fulfilled the asthma criteria compared with 43% in the RSV group (p=0.37). Conclusion: We found increased BHR and a high prevalence of asthma in school-aged children after early-life MPV infection, and findings were similar to RV, and less to RSV, compared with controls.
RESUMO
BACKGROUND: Human bocavirus 1 (HBoV1) is frequently codetected with other viruses, and detected in asymptomatic children. Thus, the burden of HBoV1 respiratory tract infections (RTI) has been unknown. Using HBoV1-mRNA to indicate true HBoV1 RTI, we assessed the burden of HBoV1 in hospitalized children and the impact of viral codetections, compared with respiratory syncytial virus (RSV). METHODS: Over 11 years, we enrolled 4879 children <16 years old admitted with RTI. Nasopharyngeal aspirates were analyzed with polymerase chain reaction for HBoV1-DNA, HBoV1-mRNA, and 19 other pathogens. RESULTS: HBoV1-mRNA was detected in 2.7% (130/4850) samples, modestly peaking in autumn and winter. Forty-three percent with HBoV1 mRNA were 12-17 months old, and only 5% were <6 months old. A total of 73.8% had viral codetections. It was more likely to detect HBoV1-mRNA if HBoV1-DNA was detected alone (odds ratio [OR]: 3.9, 95% confidence interval [CI]: 1.7-8.9) or with 1 viral codetection (OR: 1.9, 95% CI: 1.1-3.3), compared to ≥2 codetections. Codetection of severe viruses like RSV had lower odds for HBoV1-mRNA (OR: 0.34, 95% CI: 0.19-0.61). The yearly lower RTI hospitalization rate per 1000 children <5 years was 0.7 for HBoV1-mRNA and 8.7 for RSV. CONCLUSIONS: True HBoV1 RTI is most likely when HBoV1-DNA is detected alone, or with 1 codetected virus. Hospitalization due to HBoV1 LRTI is 10-12 times less common than RSV.
Assuntos
Hospitalização , Bocavirus Humano , Humanos , Criança , Bocavirus Humano/genética , Bocavirus Humano/isolamento & purificação , Infecções Respiratórias/epidemiologia , Infecções Respiratórias/virologia , RNA Mensageiro , Nasofaringe/virologia , Reação em Cadeia da Polimerase , Infecções por Parvoviridae/diagnóstico , Infecções por Parvoviridae/epidemiologia , Estações do AnoRESUMO
Background: Preterm birth is associated with increased risk of childhood infections. Whether this risk persists into adulthood is unknown and limited information is available on risk patterns across the full range of gestational ages. Methods: In this longitudinal, register-based, cohort study, we linked individual-level data on all individuals born in Norway (January 01, 1967-December 31, 2016) to nationwide hospital data (January 01, 2008-December 31, 2017). Gestational age was categorised as 23-27, 28-31, 32-33, 34-36, 37-38, 39-41, and 42-44 completed weeks. The analyses were stratified by age at follow-up: 0-11 months and 1-5, 6-14, 15-29, and 30-50 years. The primary outcome was hospitalisation due to any infectious disease, with major infectious disease groups as secondary outcomes. Adjusted hospitalisation rate ratios (RRs) for any infection and infectious disease groups were estimated using negative binomial regression. Models were adjusted for year of birth, maternal age at birth, parity, and sex, and included an offset parameter adjusted for person-time at risk. Findings: Among 2,695,830 individuals with 313,940 hospitalisations for infections, we found a pattern of higher hospitalisation risk in lower gestational age groups, which was the strongest in childhood but still evident in adulthood. Comparing those born very preterm (28-31) and late preterm (34-36) to full-term (39-41 weeks), RRs (95% confidence interval) for hospitalisation for any infectious disease at ages 1-5 were 3.3 (3.0-3.7) and 1.7 (1.6-1.8), respectively. At 30-50 years, the corresponding estimates were 1.4 (1.2-1.7) and 1.2 (1.1-1.3). The patterns were similar for the infectious disease groups, including bacterial and viral infections, respiratory tract infections (RTIs), and infections not attributable to RTIs. Interpretation: Increasing risk of hospitalisations for infections in lower gestational age groups was most prominent in children but still evident in adolescents and adults. Possible mechanisms and groups that could benefit from vaccinations and other prevention strategies should be investigated. Funding: St. Olav's University Hospital and Norwegian University of Science and Technology, Norwegian Research Council, Liaison Committee for education, research and innovation in Central Norway, European Commission, Academy of Finland, Sigrid Jusélius Foundation, Foundation for Pediatric Research, and Signe and Ane Gyllenberg Foundation.
RESUMO
BACKGROUND: The clinical impact of common human coronavirus (cHCoV) remains unclear. We studied the clinical manifestations of pediatric cHCoV infections and the possible modifying effects of codetected human rhinovirus (RV) and respiratory syncytial virus (RSV). METHODS: We used data from an 11-year-long prospective study of hospitalized children with community-acquired respiratory tract infections. Nasopharyngeal aspirates were analyzed with real-time polymerase chain reaction assay for cHCoV OC43, NL63, HKU1 and 229E, and 15 other respiratory viruses. We assessed disease severity based on the clinical factors hospitalization length, oxygen requirement, other respiratory support and supplementary fluids. RESULTS: cHCoV was detected in 341 (8%) of 4312 children. Among 104 children with single cHCoV detections, 58 (56%) had lower respiratory tract infection (LRTI) and 20 (19%) developed severe disease. The proportion with severe disease was lower among single cHCoV detections compared with single RSV detections (338 of 870; 39%), but similar to single RV detections (136 of 987; 14%). Compared with single cHCoV, codetected cHCoV-RSV was more often associated with LRTI (86 of 89; 97%) and severe disease (adjusted odds ratio, 3.3; 95% confidence interval: 1.6-6.7). LRTI was more frequent in codetected cHCoV-RV (52 of 68; 76%) than single cHCoV, but the risk of severe disease was lower (adjusted odds ratios, 0.3; 95% confidence interval: 0.1-1.0). CONCLUSIONS: cHCoV was associated with severe LRTI in hospitalized children. Viral codetections were present in two-thirds. Codetections of cHCoV-RV were associated with lower proportions of severe disease, suggesting a modifying effect of RV on HCoV.