Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
1.
Malar J ; 23(1): 64, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38429807

RESUMO

Malaria remains a global health challenge, disproportionately affecting vulnerable communities. Despite substantial progress, the emergence of anti-malarial drug resistance poses a constant threat. The Greater Mekong Subregion (GMS), which includes Cambodia, China's Yunnan province, Lao People's Democratic Republic, Myanmar, Thailand, and Viet Nam has been the epicentre for the emergence of resistance to successive generations of anti-malarial therapies. From the perspective of the World Health Organization (WHO), this article considers the collaborative efforts in the GMS, to contain Plasmodium falciparum artemisinin partial resistance and multi-drug resistance and to advance malaria elimination. The emergence of artemisinin partial resistance in the GMS necessitated urgent action and regional collaboration resulting in the Strategy for Malaria Elimination in the Greater Mekong Subregion (2015-2030), advocating for accelerated malaria elimination interventions tailored to country needs, co-ordinated and supported by the WHO Mekong malaria elimination programme. The strategy has delivered substantial reductions in malaria across all GMS countries, with a 77% reduction in malaria cases and a 97% reduction in malaria deaths across the GMS between 2012 and 2022. Notably, China was certified malaria-free by WHO in 2021. Countries' ownership and accountability have been pivotal, with each GMS country outlining its priorities in strategic and annual work plans. The development of strong networks for anti-malarial drug resistance surveillance and epidemiological surveillance was essential. Harmonization of policies and guidelines enhanced collaboration, ensuring that activities were driven by evidence. Challenges persist, particularly in Myanmar, where security concerns have limited recent progress, though an intensification and acceleration plan aims to regain momentum. Barriers to implementation can slow progress and continuing innovation is needed. Accessing mobile and migrant populations is key to addressing remaining transmission foci, requiring effective cross-border collaboration. In conclusion, the GMS has made significant progress towards malaria elimination, particularly in the east where several countries are close to P. falciparum elimination. New and persisting challenges require sustained efforts and continued close collaboration. The GMS countries have repeatedly risen to every obstacle presented, and now is the time to re-double efforts and achieve the 2030 goal of malaria elimination for the region.


Assuntos
Antimaláricos , Artemisininas , Malária Falciparum , Malária , Humanos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Artemisininas/uso terapêutico , Malária/epidemiologia , Malária/prevenção & controle , Malária/tratamento farmacológico , Malária Falciparum/epidemiologia , Malária Falciparum/prevenção & controle , Malária Falciparum/tratamento farmacológico , Organização Mundial da Saúde , Sudeste Asiático
2.
Malar J ; 22(1): 128, 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37072795

RESUMO

Malaria case management with prompt and effective treatment is critical to minimize morbidity and mortality, reduce transmission and to prevent the emergence and spread of anti-malarial drug resistance. India has the highest burden of malaria in South East Asia Region and has made impressive progress in the reduction of the malaria burden in recent years. Since the last revision to the Indian national malaria treatment policy in 2013, guidelines on new treatment strategies have been published for the control/ elimination of malaria by the World Health Organisation (WHO). The most recent update was in March 2023 based on the new evidence available. India's success is the Region's success. Therefore, to meet the national as well as regional targets of elimination, the Indian National Programme needs to consider WHO guidelines, deliberate with stakeholders and experts so as to tailor and adapt to the local context, and update National policies to incorporate the relevant ones. Technical aspects of new WHO guidelines which need to be considered for updating India's treatment policy are discussed.


Assuntos
Antimaláricos , Malária , Humanos , Malária/tratamento farmacológico , Malária/prevenção & controle , Antimaláricos/uso terapêutico , Antimaláricos/farmacologia , Resistência a Medicamentos , Políticas , Índia
3.
Malar J ; 20(1): 221, 2021 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-34006297

RESUMO

BACKGROUND: Efforts to study the biology of Plasmodium vivax liver stages, particularly the latent hypnozoites, have been hampered by the limited availability of P. vivax sporozoites. Anopheles stephensi is a major urban malaria vector in Goa and elsewhere in South Asia. Using P. vivax patient blood samples, a series of standard membrane-feeding experiments were performed with An. stephensi under the US NIH International Center of Excellence for Malaria Research (ICEMR) for Malaria Evolution in South Asia (MESA). The goal was to understand the dynamics of parasite development in mosquitoes as well as the production of P. vivax sporozoites. To obtain a robust supply of P. vivax sporozoites, mosquito-rearing and mosquito membrane-feeding techniques were optimized, which are described here. METHODS: Membrane-feeding experiments were conducted using both wild and laboratory-colonized An. stephensi mosquitoes and patient-derived P. vivax collected at the Goa Medical College and Hospital. Parasite development to midgut oocysts and salivary gland sporozoites was assessed on days 7 and 14 post-feeding, respectively. The optimal conditions for mosquito rearing and feeding were evaluated to produce high-quality mosquitoes and to yield a high sporozoite rate, respectively. RESULTS: Laboratory-colonized mosquitoes could be starved for a shorter time before successful blood feeding compared with wild-caught mosquitoes. Optimizing the mosquito-rearing methods significantly increased mosquito survival. For mosquito feeding, replacing patient plasma with naïve serum increased sporozoite production > two-fold. With these changes, the sporozoite infection rate was high (> 85%) and resulted in an average of ~ 22,000 sporozoites per mosquito. Some mosquitoes reached up to 73,000 sporozoites. Sporozoite production could not be predicted from gametocyte density but could be predicted by measuring oocyst infection and oocyst load. CONCLUSIONS: Optimized conditions for the production of high-quality P. vivax sporozoite-infected An. stephensi were established at a field site in South West India. This report describes techniques for producing a ready resource of P. vivax sporozoites. The improved protocols can help in future research on the biology of P. vivax liver stages, including hypnozoites, in India, as well as the development of anti-relapse interventions for vivax malaria.


Assuntos
Anopheles/parasitologia , Mosquitos Vetores/parasitologia , Plasmodium vivax/fisiologia , Animais , Feminino , Índia , Plasmodium vivax/crescimento & desenvolvimento , Esporozoítos/crescimento & desenvolvimento , Esporozoítos/fisiologia
4.
PLoS Med ; 17(11): e1003393, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-33211712

RESUMO

BACKGROUND: There is a high risk of Plasmodium vivax parasitaemia following treatment of falciparum malaria. Our study aimed to quantify this risk and the associated determinants using an individual patient data meta-analysis in order to identify populations in which a policy of universal radical cure, combining artemisinin-based combination therapy (ACT) with a hypnozoitocidal antimalarial drug, would be beneficial. METHODS AND FINDINGS: A systematic review of Medline, Embase, Web of Science, and the Cochrane Database of Systematic Reviews identified efficacy studies of uncomplicated falciparum malaria treated with ACT that were undertaken in regions coendemic for P. vivax between 1 January 1960 and 5 January 2018. Data from eligible studies were pooled using standardised methodology. The risk of P. vivax parasitaemia at days 42 and 63 and associated risk factors were investigated by multivariable Cox regression analyses. Study quality was assessed using a tool developed by the Joanna Briggs Institute. The study was registered in the International Prospective Register of Systematic Reviews (PROSPERO: CRD42018097400). In total, 42 studies enrolling 15,341 patients were included in the analysis, including 30 randomised controlled trials and 12 cohort studies. Overall, 14,146 (92.2%) patients had P. falciparum monoinfection and 1,195 (7.8%) mixed infection with P. falciparum and P. vivax. The median age was 17.0 years (interquartile range [IQR] = 9.0-29.0 years; range = 0-80 years), with 1,584 (10.3%) patients younger than 5 years. 2,711 (17.7%) patients were treated with artemether-lumefantrine (AL, 13 studies), 651 (4.2%) with artesunate-amodiaquine (AA, 6 studies), 7,340 (47.8%) with artesunate-mefloquine (AM, 25 studies), and 4,639 (30.2%) with dihydroartemisinin-piperaquine (DP, 16 studies). 14,537 patients (94.8%) were enrolled from the Asia-Pacific region, 684 (4.5%) from the Americas, and 120 (0.8%) from Africa. At day 42, the cumulative risk of vivax parasitaemia following treatment of P. falciparum was 31.1% (95% CI 28.9-33.4) after AL, 14.1% (95% CI 10.8-18.3) after AA, 7.4% (95% CI 6.7-8.1) after AM, and 4.5% (95% CI 3.9-5.3) after DP. By day 63, the risks had risen to 39.9% (95% CI 36.6-43.3), 42.4% (95% CI 34.7-51.2), 22.8% (95% CI 21.2-24.4), and 12.8% (95% CI 11.4-14.5), respectively. In multivariable analyses, the highest rate of P. vivax parasitaemia over 42 days of follow-up was in patients residing in areas of short relapse periodicity (adjusted hazard ratio [AHR] = 6.2, 95% CI 2.0-19.5; p = 0.002); patients treated with AL (AHR = 6.2, 95% CI 4.6-8.5; p < 0.001), AA (AHR = 2.3, 95% CI 1.4-3.7; p = 0.001), or AM (AHR = 1.4, 95% CI 1.0-1.9; p = 0.028) compared with DP; and patients who did not clear their initial parasitaemia within 2 days (AHR = 1.8, 95% CI 1.4-2.3; p < 0.001). The analysis was limited by heterogeneity between study populations and lack of data from very low transmission settings. Study quality was high. CONCLUSIONS: In this meta-analysis, we found a high risk of P. vivax parasitaemia after treatment of P. falciparum malaria that varied significantly between studies. These P. vivax infections are likely attributable to relapses that could be prevented with radical cure including a hypnozoitocidal agent; however, the benefits of such a novel strategy will vary considerably between geographical areas.


Assuntos
Antimaláricos/uso terapêutico , Combinação Arteméter e Lumefantrina/uso terapêutico , Malária Vivax/tratamento farmacológico , Plasmodium vivax/patogenicidade , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Artemisininas/uso terapêutico , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Malária/tratamento farmacológico , Malária Falciparum/tratamento farmacológico , Masculino , Pessoa de Meia-Idade , Parasitemia/tratamento farmacológico , Plasmodium vivax/efeitos dos fármacos , Adulto Jovem
5.
BMC Med ; 18(1): 138, 2020 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-32482173

RESUMO

BACKGROUND: Malaria in pregnancy, including asymptomatic infection, has a detrimental impact on foetal development. Individual patient data (IPD) meta-analysis was conducted to compare the association between antimalarial treatments and adverse pregnancy outcomes, including placental malaria, accompanied with the gestational age at diagnosis of uncomplicated falciparum malaria infection. METHODS: A systematic review and one-stage IPD meta-analysis of studies assessing the efficacy of artemisinin-based and quinine-based treatments for patent microscopic uncomplicated falciparum malaria infection (hereinafter uncomplicated falciparum malaria) in pregnancy was conducted. The risks of stillbirth (pregnancy loss at ≥ 28.0 weeks of gestation), moderate to late preterm birth (PTB, live birth between 32.0 and < 37.0 weeks), small for gestational age (SGA, birthweight of < 10th percentile), and placental malaria (defined as deposition of malaria pigment in the placenta with or without parasites) after different treatments of uncomplicated falciparum malaria were assessed by mixed-effects logistic regression, using artemether-lumefantrine, the most used antimalarial, as the reference standard. Registration PROSPERO: CRD42018104013. RESULTS: Of the 22 eligible studies (n = 5015), IPD from16 studies were shared, representing 95.0% (n = 4765) of the women enrolled in literature. Malaria treatment in this pooled analysis mostly occurred in the second (68.4%, 3064/4501) or third trimester (31.6%, 1421/4501), with gestational age confirmed by ultrasound in 91.5% (4120/4503). Quinine (n = 184) and five commonly used artemisinin-based combination therapies (ACTs) were included: artemether-lumefantrine (n = 1087), artesunate-amodiaquine (n = 775), artesunate-mefloquine (n = 965), and dihydroartemisinin-piperaquine (n = 837). The overall pooled proportion of stillbirth was 1.1% (84/4361), PTB 10.0% (619/4131), SGA 32.3% (1007/3707), and placental malaria 80.1% (2543/3035), and there were no significant differences of considered outcomes by ACT. Higher parasitaemia before treatment was associated with a higher risk of SGA (adjusted odds ratio [aOR] 1.14 per 10-fold increase, 95% confidence interval [CI] 1.03 to 1.26, p = 0.009) and deposition of malaria pigment in the placenta (aOR 1.67 per 10-fold increase, 95% CI 1.42 to 1.96, p < 0.001). CONCLUSIONS: The risks of stillbirth, PTB, SGA, and placental malaria were not different between the commonly used ACTs. The risk of SGA was high among pregnant women infected with falciparum malaria despite treatment with highly effective drugs. Reduction of malaria-associated adverse birth outcomes requires effective prevention in pregnant women.


Assuntos
Antimaláricos/efeitos adversos , Artemisininas/efeitos adversos , Malária Falciparum/induzido quimicamente , Placenta/efeitos dos fármacos , Quinina/efeitos adversos , Adulto , Antimaláricos/farmacologia , Artemisininas/farmacologia , Feminino , Humanos , Malária Falciparum/complicações , Placenta/patologia , Gravidez , Resultado da Gravidez/epidemiologia , Quinina/farmacologia , Quinina/provisão & distribuição , Adulto Jovem
6.
Malar J ; 19(1): 39, 2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-31969146

RESUMO

BACKGROUND: Parenteral artesunate is the treatment of choice for severe malaria. It is safe, efficacious and well tolerated anti-malarial. However, delayed haemolysis has been reported in travellers, non-immune individuals and in African children. METHODS: A prospective, observational study was carried out in admitted severe malaria patients receiving parenteral artesunate. The patients were followed up until day 28 for monitoring clinical as well as laboratory parameters for haemolytic anaemia. RESULTS: Twenty-four patients with severe malaria receiving injection artesunate were enrolled in the study. Post-artesunate delayed haemolysis following parenteral artesunate therapy was observed in three of 24 patients (12.5%, 95% confidence interval 4.5-31.2%). Haemolysis was observed in two more patients possibly due to other reasons. The haemoglobin fall ranged from 13.6 to 38.3% from day 7 to day 28 in these patients. CONCLUSION: The possibility of delayed haemolysis should be considered while treating the severe malaria patients with parenteral artesunate. The study highlights the need for further studies in different epidemiological settings.


Assuntos
Anemia Hemolítica/prevenção & controle , Antimaláricos/administração & dosagem , Artesunato/administração & dosagem , Malária/tratamento farmacológico , Administração Intravenosa , Adolescente , Adulto , Anemia Hemolítica/induzido quimicamente , Criança , Pré-Escolar , Feminino , Hemólise/efeitos dos fármacos , Humanos , Índia , Lactente , Malária/sangue , Masculino , Pessoa de Meia-Idade , Estudos Prospectivos , Fatores de Tempo , Adulto Jovem
7.
Malar J ; 19(1): 214, 2020 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-32571333

RESUMO

BACKGROUND: Vivax malaria is associated with significant morbidity and economic loss, and constitutes the bulk of malaria cases in large parts of Asia and South America as well as recent case reports in Africa. The widespread prevalence of vivax is a challenge to global malaria elimination programmes. Vivax malaria control is particularly challenged by existence of dormant liver stage forms that are difficult to treat and are responsible for multiple relapses, growing drug resistance to the asexual blood stages and host-genetic factors that preclude use of specific drugs like primaquine capable of targeting Plasmodium vivax liver stages. Despite an obligatory liver-stage in the Plasmodium life cycle, both the difficulty in obtaining P. vivax sporozoites and the limited availability of robust host cell models permissive to P. vivax infection are responsible for the limited knowledge of hypnozoite formation biology and relapse mechanisms, as well as the limited capability to do drug screening. Although India accounts for about half of vivax malaria cases world-wide, very little is known about the vivax liver stage forms in the context of Indian clinical isolates. METHODS: To address this, methods were established to obtain infective P. vivax sporozoites from an endemic region in India and multiple assay platforms set up to detect and characterize vivax liver stage forms. Different hepatoma cell lines, including the widely used HCO4 cells, primary human hepatocytes as well as hepatocytes obtained from iPSC's generated from vivax patients and healthy donors were tested for infectivity with P. vivax sporozoites. RESULTS: Both large and small forms of vivax liver stage are detected in these assays, although the infectivity obtained in these platforms are low. CONCLUSIONS: This study provides a proof of concept for detecting liver stage P. vivax and provide the first characterization of P. vivax liver stage forms from an endemic region in India.


Assuntos
Estágios do Ciclo de Vida , Fígado/parasitologia , Malária Vivax/parasitologia , Plasmodium vivax/crescimento & desenvolvimento , Índia , Plasmodium vivax/isolamento & purificação
8.
J Vector Borne Dis ; 57(3): 213-220, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-34472504

RESUMO

BACKGROUND & OBJECTIVES: In India, the burden of Plasmodium vivax malaria has been projected to be highest in some areas. This study investigated the efficacy and safety of fixed dose combination (FDC) of arterolane maleate (AM) 37.5 mg and piperaquine phosphate 187.5 mg (PQP) dispersible tablets and (not with) chloroquine in the treatment of uncomplicated vivax malaria in pediatric patients. METHODS: This multicentric, open-label trial was carried out at 12 sites in India. A total of 164 patients aged 6 months to 12 years with P. vivax malaria were randomized in a ratio of 2:1 to AM-PQP (111 patients) or chloroquine (53 patients) arms. The duration of follow up was 42 days. RESULTS: At 72 hours, the proportion of a parasitaemic and afebrile patients was 100% in both treatment arms in per protocol (PP) population, and 98.2% and 100% [95% CI: -1.8 (-6.33 to 5.08)] in AM-PQP and chloroquine arms, respectively, in intent to treat (ITT) population. The efficacy and safety of AM-PQP was found to be comparable to chloroquine in the treatment of uncomplicated P. vivax malaria in pediatric patients. Overall, the cure rate at Day 28 and 42 was >95% for both AM-PQP or CQ. The commonly reported clinical adverse event was vomiting. No patient was discontinued for any QTc abnormality. INTERPRETATION & CONCLUSION: The efficacy and safety of FDC of arterolane maleate and piperaquine phosphate was found to be comparable to chloroquine for treatment of uncomplicated P. vivax malaria in pediatric patients.


Assuntos
Antimaláricos , Malária Falciparum , Malária Vivax , Antimaláricos/efeitos adversos , Criança , Cloroquina/efeitos adversos , Cloroquina/análogos & derivados , Compostos Heterocíclicos com 1 Anel , Humanos , Malária Falciparum/tratamento farmacológico , Malária Vivax/tratamento farmacológico , Maleatos/uso terapêutico , Peróxidos , Fosfatos/uso terapêutico , Plasmodium vivax , Quinolinas , Compostos de Espiro
10.
Indian J Med Res ; 149(4): 548-553, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-31411180

RESUMO

Background & objectives: Dengue virus infection is endemic in India with all the four serotypes of dengue virus in circulation. This study was aimed to determine the geographic distribution of the primary and secondary dengue cases in India. Methods: A multicentre cross-sectional study was conducted at Department of Health Research / Indian Council of Medical Research (DHR)/(ICMR) viral research and diagnostic laboratories (VRDLs) and selected ICMR institutes located in India. Only laboratory-confirmed dengue cases with date of onset of illness less than or equal to seven days were included between September and October 2017. Dengue NS1 antigen ELISA and anti-dengue IgM capture ELISA were used to diagnose dengue cases while anti-dengue IgG capture ELISA was used for identifying the secondary dengue cases. Results: Of the 1372 dengue cases, 897 (65%) were classified as primary dengue and 475 (35%) as secondary dengue cases. However, the proportion varied widely geographically, with Theni, Tamil Nadu; Tirupati, Andhra Pradesh and Udupi-Manipal, Karnataka reporting more than 65 per cent secondary dengue cases while Srinagar, Jammu and Kashmir reporting as low as 10 per cent of the same. The median age of primary dengue cases was 25 yr [interquartile range (IQR 17-35] while that of secondary dengue cases was 23 yr (IQR 13.5-34). Secondary dengue was around 50 per cent among the children belonging to the age group 6-10 yr while it ranged between 20-43 per cent among other age groups. Interpretation & conclusions: Our findings showed a wide geographical variation in the distribution of primary and secondary dengue cases in India. It would prove beneficial to include primary and secondary dengue differentiation protocol in the national dengue surveillance programme.


Assuntos
Anticorpos Antivirais/sangue , Vírus da Dengue/patogenicidade , Dengue/sangue , Proteínas não Estruturais Virais/sangue , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Criança , Pré-Escolar , Dengue/classificação , Dengue/epidemiologia , Dengue/virologia , Surtos de Doenças , Ensaio de Imunoadsorção Enzimática , Feminino , Humanos , Imunoglobulina M/sangue , Índia/epidemiologia , Lactente , Masculino , Pessoa de Meia-Idade , Sorogrupo , Adulto Jovem
11.
Malar J ; 17(1): 11, 2018 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-29310655

RESUMO

BACKGROUND: Malaria remains a global health problem despite availability of effective tools. For malaria elimination, drugs targeting sexual stages of Plasmodium falciparum need to be incorporated in treatment regimen along with schizonticidal drugs to interrupt transmission. Primaquine is recommended as a transmission blocking drug for its effect on mature gametocytes but is not extensively utilized because of associated safety concerns among glucose-6-phosphate dehydrogenase (G6PD) deficient patients. In present work, methylene blue, which is proposed as an alternative to primaquine is investigated for its gametocytocidal activity amongst Indian field isolates. An effort has been made to establish Indian field isolates of P. falciparum as in vitro model for gametocytocidal drugs screening. METHODS: Plasmodium falciparum isolates were adapted to in vitro culture and induced to gametocyte production by hypoxanthine and culture was enriched for gametocyte stages using N-acetyl-glucosamine. Gametocytes were incubated with methylene blue for 48 h and stage specific gametocytocidal activity was evaluated by microscopic examination. RESULTS: Plasmodium falciparum field isolates RKL-9 and JDP-8 were able to reproducibly produce gametocytes in high yield and were used to screen gametocytocidal drugs. Methylene blue was found to target gametocytes in a concentration dependent manner by either completely eliminating gametocytes or rendering them morphologically deformed with mean IC50 (early stages) as 424.1 nM and mean IC50 (late stages) as 106.4 nM. These morphologically altered gametocytes appeared highly degenerated having shrinkage, distortions and membrane deformations. CONCLUSIONS: Field isolates that produce gametocytes in high yield in vitro can be identified and used to screen gametocytocidal drugs. These isolates should be used for validation of gametocytocidal hits obtained previously by using lab adapted reference strains. Methylene blue was found to target gametocytes produced from Indian field isolates and is proposed to be used as a gametocytocidal adjunct with artemisinin-based combination therapy. Further exploration of methylene blue in clinical studies amongst Indian population, including G6PD deficient patients, is recommended.


Assuntos
Antimaláricos/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Azul de Metileno/farmacologia , Plasmodium falciparum/citologia , Plasmodium falciparum/efeitos dos fármacos , Humanos , Índia , Concentração Inibidora 50 , Malária Falciparum/parasitologia , Microscopia , Testes de Sensibilidade Parasitária
12.
Malar J ; 17(1): 385, 2018 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-30359252

RESUMO

BACKGROUND: The native gut microbiota of Anopheles mosquitoes is known to play a key role in the physiological function of its host. Interestingly, this microbiota can also influence the development of Plasmodium in its host mosquitoes. In recent years, much interest has been shown in the employment of gut symbionts derived from vectors in the control of vector-borne disease transmission. In this study, the midgut microbial diversity has been characterized among laboratory-reared adult Anopheles stephensi mosquitoes, from the colony created by rearing progeny of wild-caught mosquitoes (obtained from three different locations in southern India) for multiple generations, using 16S ribosomal RNA (rRNA) gene sequencing approach. Further, the influence of native midgut microbiota of mosquitoes on the development of rodent malaria parasite Plasmodium berghei in its host has been studied. METHODS: The microbial diversity associated with the midgut of An. stephensi mosquitoes was studied by sequencing V3 region of 16S ribosomal RNA (rRNA) gene. The influence of native midgut microbiota of An. stephensi mosquitoes on the susceptibility of the mosquitoes to rodent malaria parasite P. berghei was studied by comparing the intensity and prevalence of P. berghei infection among the antibiotic treated and untreated cohorts of mosquitoes. RESULTS: The analysis of bacterial diversity from the midguts of An. stephensi showed Proteobacteria as the most dominant population among the three laboratory-reared strains of An. stephensi studied. Major genera identified among these mosquito strains were Acinetobacter, Pseudomonas, Prevotella, Corynebacterium, Veillonella, and Bacillus. The mosquito infectivity studies carried out to determine the implication of total midgut microbiota on P. berghei infection showed that mosquitoes whose native microbiota cleared with antibiotics had increased susceptibility to P. berghei infection compared to the antibiotic untreated mosquitoes with its natural native microbiota. CONCLUSIONS: The use of microbial symbiont to reduce the competence of vectors involved in disease transmission has gained much importance in recent years as an emerging alternative approach towards disease control. In this context, the present study was aimed to identify the midgut microbiota composition of An. stephensi, and its effect on the development of P. berghei. Interestingly, the analysis of midgut microbiota from An. stephensi revealed the presence of genus Veillonella in Anopheles species for the first time. Importantly, the study also revealed the negative influence of total midgut microbiota on the development of P. berghei in three laboratory strains of An. stephensi, emphasizing the importance of understanding the gut microbiota in malaria vectors, and its relationship with parasite development in designing strategies to control malaria transmission.


Assuntos
Anopheles/microbiologia , Anopheles/parasitologia , Fenômenos Fisiológicos Bacterianos , Microbioma Gastrointestinal , Plasmodium berghei/fisiologia , Animais , Animais de Laboratório/microbiologia , Animais de Laboratório/parasitologia , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Doenças Endêmicas , Geografia , Índia , RNA Bacteriano/análise , RNA Ribossômico 16S/análise , Análise de Sequência de RNA
13.
Malar J ; 17(1): 4, 2018 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-29304794

RESUMO

BACKGROUND: Household and environmental factors are reported to influence the malaria endemicity of a place. Hence, a careful assessment of these factors would, potentially help in locating the possible areas under risk to plan and adopt the most suitable and appropriate malaria control strategies. METHODS: A cross-sectional household survey was carried out in the study site, Besant Nagar, Chennai, through random sampling method from February 2014 to February 2015. A structured interviewer-administered questionnaire was used to assess selected variables of demography, structural particulars of a household, usage of repellents, animals on site, presence of breeding habitats and any mosquito/vector breeding in the household, malaria/vector control measures undertaken by government in each houses. The data was collected through one to one personal interview method, statistically analysed overall and compared between the households/people infected with malaria within a period of 1 year and their non-infected counterparts of the same area. RESULTS: Presence of malaria was found to be significantly associated with the occupation, number of inhabitants, presence of a separate kitchen, availability of overhead tanks and cisterns, immatures of vector mosquitoes, presence of mosquito breeding and type of roof structures (p < 0.05). However, age, gender, usage of repellents, animals on site, number of breeding habitats or detection of vector breeding did not significantly associate with the malaria incidence/prevalence. CONCLUSIONS: The survey revealed various demographic, household and environmental factors likely to associate with the malaria incidence/prevalence in an urban slum of Chennai. The socio-demographic and household variables have revealed disparities in malaria infection from the present cross sectional study. The absence of significant association with many parameters indicates the probable role of other confounding factors which influence the malaria prevalence.


Assuntos
Características da Família , Malária/epidemiologia , Áreas de Pobreza , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Criança , Pré-Escolar , Estudos Transversais , Feminino , Humanos , Índia/epidemiologia , Lactente , Masculino , Pessoa de Meia-Idade , Prevalência , Fatores de Risco , Fatores Socioeconômicos , Inquéritos e Questionários , Adulto Jovem
14.
Malar J ; 17(1): 201, 2018 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-29769075

RESUMO

BACKGROUND: Environmental factors such as temperature, relative humidity and their daily variation influence a range of mosquito life history traits and hence, malaria transmission. The standard way of characterizing environmental factors with meteorological station data need not be the actual microclimates experienced by mosquitoes within local transmission settings. METHODS: A year-long study was conducted in Chennai, India to characterize local temperature and relative humidity (RH). Data loggers (Hobos) were placed in a range of probable indoor and outdoor resting sites of Anopheles stephensi. Recordings were taken hourly to estimate mean temperature and RH, together with daily temperature range (DTR) and daily relative humidity range. The temperature data were used to explore the predicted variation in extrinsic incubation period (EIP) of Plasmodium falciparum and Plasmodium vivax between microhabitats and across the year. RESULTS: Mean daily temperatures within the indoor settings were significantly warmer than those recorded outdoors. DTR in indoor environments was observed to be modest and ranged from 2 to 6 °C. Differences in EIP between microhabitats were most notable during the hottest summer months of April-June, with parasite development predicted to be impaired for tiled houses and overhead tanks. Overall, the prevailing warm and stable conditions suggest rapid parasite development rate regardless of where mosquitoes might rest. Taking account of seasonal and local environmental variation, the predicted EIP of P. falciparum varied from a minimum of 9.1 days to a maximum of 15.3 days, while the EIP of P. vivax varied from 8.0 to 24.3 days. CONCLUSIONS: This study provides a detailed picture of the actual microclimates experienced by mosquitoes in an urban slum malaria setting. The data indicate differences between microhabitats that could impact mosquito and parasite life history traits. The predicted effects for EIP are often relatively subtle, but variation between minimum and maximum EIPs can play a role in disease transmission, depending on the time of year and where mosquitoes rest. Appropriate characterization of the local microclimate conditions would be the key to fully understand the effects of environment on local transmission ecology.


Assuntos
Período de Incubação de Doenças Infecciosas , Malária Falciparum/transmissão , Malária Vivax/transmissão , Microclima , Índia/epidemiologia , Malária Falciparum/epidemiologia , Malária Falciparum/parasitologia , Malária Vivax/epidemiologia , Malária Vivax/parasitologia , Plasmodium falciparum/fisiologia , Plasmodium vivax/fisiologia , Prevalência
15.
Malar J ; 17(1): 246, 2018 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-29973212

RESUMO

BACKGROUND: In India, the recommended first-line treatment for malaria in the second and third trimester of pregnancy is artesunate + sulfadoxine-pyrimethamine (AS+SP). However, data on safety and efficacy of artemisinin-based combination therapy (ACT) in pregnancy is limited. This study assessed the safety and efficacy of AS+SP and artesunate + mefloquine (AS+MQ) for treatment of Plasmodium falciparum in pregnancy in India. METHODS: This open-label, randomized clinical trial was conducted from October 2010 to December 2013 at three sites in India (Ranchi and Jamshedpur in Jharkhand state, and Rourkela in Odisha state). Pregnant women in the second or third trimester who had P. falciparum mono-infection of any parasite density with or without fever were randomized to receive AS+SP or AS+MQ. Blood slides and filter paper samples for Polymerase Chain Reaction (PCR) were collected on days 0, 1, 2, 3, 14, 21, 28, 42 and 63 post treatment. Women were followed up at delivery and at day 42 postpartum. FINDINGS: Two hundred and forty-eight women of 7064 pregnant women (3.5%) who were screened at monthly antenatal clinics had a P. falciparum mono-infection and were randomized to receive AS+SP (125) or AS+MQ (123) and all of these women were included in the intention to treat (ITT) analysis. The primary endpoint of an adequate clinical and parasite response (ACPR) on day 63 was not available for 9 women who were counted as treatment failure in the ITT analysis. In the ITT population, the ACPR was 121/125 (96.8%; 95% Confidence interval (CI) 92.0-99.1%) in the AS+SP group and 117/123 (95.1%; 95% CI 89.7-98.2) in the AS+MQ group. Among the 239 women (121 from the AS+SP arm and 118 from the AS+MQ arm) who completed the day 63 follow up (per protocol analysis) the ACPR was 100% in the AS+SP group and 99.2% (117/118) in the AS+MQ group. There were five serious adverse events (SAE) among pregnant women (4 in the AS+SP group and 1 in the AS+MQ group) and 13 fetal/neonatal SAEs (7 in the AS+SP group and 6 in the AS+MQ) but none of them were related to the study drugs. A higher proportion of women in the AS+MQ arm reported vomiting within 7 days post-treatment than did women in the AS+SP arm (6.9 vs. 1.6%; p = 0.001). CONCLUSION: Both AS+SP and AS+MQ are safe and effective for treatment of uncomplicated falciparum malaria in pregnancy in India. Trial registration CTRI This study is registered with Clinical Trial Registry India (CTRI), number CTRI/2009/091/001055. Date of Registration 11 January 2010, http://ctri.nic.in/Clinicaltrials/pmaindet2.php?trialid=1185&EncHid=&userName=anvikar.


Assuntos
Antimaláricos/uso terapêutico , Artemisininas/uso terapêutico , Artesunato/uso terapêutico , Malária Falciparum/prevenção & controle , Mefloquina/uso terapêutico , Complicações Parasitárias na Gravidez/prevenção & controle , Pirimetamina/uso terapêutico , Sulfadoxina/uso terapêutico , Adulto , Combinação de Medicamentos , Feminino , Humanos , Incidência , Índia/epidemiologia , Análise de Intenção de Tratamento , Malária Falciparum/epidemiologia , Plasmodium falciparum/efeitos dos fármacos , Gravidez , Complicações Parasitárias na Gravidez/epidemiologia , Prevalência , Resultado do Tratamento , Adulto Jovem
16.
Malar J ; 17(1): 225, 2018 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-29871629

RESUMO

BACKGROUND: As much as 80% of global Plasmodium vivax infections occur in South Asia and there is a shortage of direct studies on infectivity of P. vivax in Anopheles stephensi, the most common urban mosquito carrying human malaria. In this quest, the possible effects of laboratory colonization of mosquitoes on infectivity and development of P. vivax is of interest given that colonized mosquitoes can be genetically less divergent than the field population from which they originated. METHODS: Patient-derived P. vivax infected blood was fed to age-matched wild and colonized An. stephensi. Such a comparison requires coordinated availability of same-age wild and colonized mosquito populations. Here, P. vivax infection are studied in colonized An. stephensi in their 66th-86th generation and fresh field-caught An. stephensi. Wild mosquitoes were caught as larvae and pupae and allowed to develop into adult mosquitoes in the insectary. Parasite development to oocyst and sporozoite stages were assessed on days 7/8 and 12/13, respectively. RESULTS: While there were batch to batch variations in infectivity of individual patient-derived P. vivax samples, both wild and colonized An. stephensi were roughly equally susceptible to oocyst stage Plasmodium infection. At the level of sporozoite development, significantly more mosquitoes with sporozoite load of 4+ were seen in wild than in colonized populations.


Assuntos
Anopheles/parasitologia , Mosquitos Vetores/parasitologia , Plasmodium vivax/isolamento & purificação , Animais , Feminino , Índia
17.
Indian J Med Res ; 147(3): 299-307, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29923520

RESUMO

Background & objectives: Different formulations of Bacillus thuringiensis var. israelensis (Bti) have been tested against different mosquito vectors and other insects for their residual activity. In the present study, the efficacy and residual activity of a new formulation of Bti (Bactivec Suspension Concentrate) were evaluated against immature stages of Anopheles stephensi Liston (Diptera: Culicidae), Aedes aegypti Linnaeus (Diptera: Culicidae) and Culex quinquefasciatus Say (Diptera: Culicidae), in natural habitats in Phase II and Phase III in Bengaluru, India. Methods: Preferential breeding habitats of the mosquito species were selected and four dosages (0.25, 0.5, 1 and 2 ml/50 l) were tested in Phase II trial. Two most effective dosages, 0.5 and 1 ml/50 l were selected for Phase III trial. The evaluation was carried out essentially following the guidelines of the World Health Organization Pesticide Evaluation Scheme. Pre-treatment and post-treatment densities were recorded at regular intervals, and >80 per cent reduction in pupae was taken as the duration of effectiveness. Results: Bactivec SC treated at the dosage of 1 ml/50 l could produce 10-17 days efficacy (>80% reduction in pupae) in clean water habitats tested, whereas 0.5 ml/50 l dosage showed residual activity from 7 to 14 days against Ae. aegypti and An. stephensi in Phase III studies. In polluted water habitats, 4-7 days efficacy could be recorded against Cx. quinquefasciatus in Phase III. Interpretation & conclusions: The Bactivec SC formulation was operationally feasible and easy to handle. For the control of Anopheles and Aedes mosquitoes in freshwater habitats, 1 ml/50 l dosage was found effective, whereas in polluted water habitats against Cx. quinquefasciatus 5 ml/m2 was found effective.


Assuntos
Bacillus thuringiensis/efeitos dos fármacos , Inseticidas/farmacologia , Mosquitos Vetores , Aedes , Animais , Anopheles , Culex , Índia , Larva , Controle de Mosquitos
18.
Exp Parasitol ; 190: 1-9, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29750967

RESUMO

Loop mediated isothermal amplification (LAMP) assay is sensitive, prompt, high throughput and field deployable technique for nucleic acid amplification under isothermal conditions. In this study, we have developed and optimized four different visualization methods of loop-mediated isothermal amplification (LAMP) assay to detect Pfcrt K76T mutants of P. falciparum and compared their important features for one-pot in-field applications. Even though all the four tested LAMP methods could successfully detect K76T mutants of P. falciparum, however considering the time, safety, sensitivity, cost and simplicity, the malachite green and HNB based methods were found more efficient. Among four different visual dyes uses to detect LAMP products accurately, hydroxynaphthol blue and malachite green could produce long stable color change and brightness in a close tube-based approach to prevent cross-contamination risk. Our results indicated that the LAMP offers an interesting novel and convenient best method for the rapid, sensitive, cost-effective, and fairly user friendly tool for detection of K76T mutants of P. falciparum and therefore presents an alternative to PCR-based assays. Based on our comparative analysis, better field based LAMP visualization method can be chosen easily for the monitoring of other important drug targets (Kelch13 propeller region).


Assuntos
Antimaláricos/farmacologia , Cloroquina/farmacologia , Técnicas de Genotipagem/normas , Técnicas de Amplificação de Ácido Nucleico/normas , Plasmodium falciparum/classificação , Colorimetria , Corantes/análise , DNA de Protozoário/análise , DNA de Protozoário/isolamento & purificação , Resistência a Medicamentos , Etídio/análise , Corantes Fluorescentes/análise , Técnicas de Genotipagem/métodos , Mutação , Naftalenossulfonatos/análise , Técnicas de Amplificação de Ácido Nucleico/métodos , Plasmodium falciparum/efeitos dos fármacos , Plasmodium falciparum/genética , Sistemas Automatizados de Assistência Junto ao Leito , Reprodutibilidade dos Testes , Corantes de Rosanilina/análise , Sensibilidade e Especificidade
19.
J Vector Borne Dis ; 55(1): 9-13, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29916442

RESUMO

Even though malaria is preventable and curable, it has become a serious threat to mankind. In 2016, there were an estimated 216 million cases of malaria across the world. The biology of its causative agent, i.e. Plasmodium parasite is full of complex mechanisms. There are five Plasmodium species responsible for malaria in humans, viz. Plasmodium falciparum, P. vivax, P. malariae, P. ovale and recently identified P. knowlesi that normally infect apes. In humans, malaria is spread by the injection of Plasmodium sporozoites through the bite of infectious Anopheles' female mosquito during their blood meal. From the time of entry into human skin till the development into the asexual forms, the parasite undergoes several transformations. This review attempts to understand the science behind the pre-erythrocytic liver stage of Plasmodium. Research articles explaining parasite biology, cell-traversal, transformation stages, cell-egress process, etc. were retrieved from PubMed and google scholar database. Various known and unknown mechanisms and strategies used by the malaria parasite P. berghei in rodent models have been discussed in this review. Limited or no information was available for humans, due to technical feasibility and complexity of parasite's life cycle. Hence, it was concluded that there is an urgent need to investigate the hepatic invasion, traversal and egress mechanism of P. falciparum and P. vivax for developing novel therapeutics to fight against malaria.


Assuntos
Estágios do Ciclo de Vida/fisiologia , Fígado/parasitologia , Plasmodium/fisiologia , Animais , Anopheles/parasitologia , Modelos Animais de Doenças , Eritrócitos/parasitologia , Feminino , Humanos , Fígado/citologia , Merozoítos/crescimento & desenvolvimento , Merozoítos/fisiologia , Mosquitos Vetores/parasitologia , Plasmodium/classificação , Plasmodium/genética , Plasmodium/crescimento & desenvolvimento , Esporozoítos/crescimento & desenvolvimento , Esporozoítos/fisiologia
20.
Biochemistry ; 56(3): 534-542, 2017 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-27478903

RESUMO

Charged, solvent-exposed residues at the entrance to the substrate binding site (gatekeeper residues) produce electrostatic dipole interactions with approaching substrates, and control their access by a novel mechanism called "electrostatic gatekeeper effect". This proof-of-concept study demonstrates that the nucleotide specificity can be engineered by altering the electrostatic properties of the gatekeeper residues outside the binding site. Using Blastocystis succinyl-CoA synthetase (SCS, EC 6.2.1.5), we demonstrated that the gatekeeper mutant (ED) resulted in ATP-specific SCS to show high GTP specificity. Moreover, nucleotide binding site mutant (LF) had no effect on GTP specificity and remained ATP-specific. However, via combination of the gatekeeper mutant with the nucleotide binding site mutant (ED+LF), a complete reversal of nucleotide specificity was obtained with GTP, but no detectable activity was obtained with ATP. This striking result of the combined mutant (ED+LF) was due to two changes; negatively charged gatekeeper residues (ED) favored GTP access, and nucleotide binding site residues (LF) altered ATP binding, which was consistent with the hypothesis of the "electrostatic gatekeeper effect". These results were further supported by molecular modeling and simulation studies. Hence, it is imperative to extend the strategy of the gatekeeper effect in a different range of crucial enzymes (synthetases, kinases, and transferases) to engineer substrate specificity for various industrial applications and substrate-based drug design.


Assuntos
Trifosfato de Adenosina/química , Blastocystis/genética , Guanosina Trifosfato/química , Engenharia de Proteínas , Proteínas de Protozoários/química , Succinato-CoA Ligases/química , Trifosfato de Adenosina/metabolismo , Sequência de Aminoácidos , Animais , Sítios de Ligação , Blastocystis/enzimologia , Clonagem Molecular , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Guanosina Trifosfato/metabolismo , Cinética , Simulação de Dinâmica Molecular , Mutação , Ligação Proteica , Estrutura Secundária de Proteína , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Eletricidade Estática , Especificidade por Substrato , Succinato-CoA Ligases/genética , Succinato-CoA Ligases/metabolismo , Suínos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA