RESUMO
Solid tumors frequently experience hypoxia or low O2 levels. In these conditions, hypoxia-inducible factor 1 alpha (HIF-1α) is activated and acts as a transcription factor that regulates cancer cell adaptation to O2 and nutrient deprivation. HIF-1α controls gene expression associated with various signaling pathways that promote cancer cell proliferation and survival. MicroRNAs (miRNAs) are 22-nucleotide noncoding RNAs that play a role in various biological processes essential for cancer progression. This review presents an overview of how hypoxia regulates the expression of multiple miRNAs in the progression of cancer cells.
Assuntos
Regulação Neoplásica da Expressão Gênica , MicroRNAs , Neoplasias , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Neoplasias/patologia , Hipóxia Celular/genética , Hipóxia Celular/fisiologia , Animais , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genéticaRESUMO
Medulloblastomas are among the most frequently diagnosed pediatric solid tumors, and drug resistance remains as the principal cause of treatment failure. Hypoxia and the subsequent activation of hypoxiainducible factor 1α (HIF1α) are considered key factors in modulating drug antitumor effectiveness, but the underlying mechanisms in medulloblastomas have not yet been clearly understood. The aim of the present study was to determine whether hypoxia induces resistance to cyclophosphamide (CPA) and ifosfamide (IFA) in DAOY medulloblastoma cells, whether the mechanism is dependent on HIF1α, and whether involves the modulation of the expression of cytochromes P450 (CYP)2B6, 3A4 and 3A5 and the control of cell proliferation. Monolayer cultures of DAOY medulloblastoma cells were exposed for 24 h to moderate (1% O2) or severe (0.1% O2) hypoxia, and protein expression was evaluated by immunoblotting. Cytotoxicity was studied with the MTT assay and by Annexin V/PI staining and flow cytometry. Cell proliferation was determined by the trypanblue exclusion assay and cell cycle by propidium iodide staining and flow cytometry. Hypoxia decreased CPA and IFA cytotoxicity in medulloblastoma cells, which correlated with a reduction in the protein levels of CYP2B6, CYP3A4 and CYP3A5 and inhibition of cell proliferation. These responses were dependent on hypoxiainduced HIF1α activation, as evidenced by chemical inhibition of its transcriptional activity with 2methoxyestradiol (2ME), which enhanced the cytotoxic activity of CPA and IFA and increased apoptosis. Our results indicate that by stimulating HIF1α activity, hypoxia downregulates the expression of CYP2B6, CYP3A4 and CYP3A5, that in turn leads to decreased conversion of CPA and IFA into their active forms and thus to diminished cytotoxicity. These results support that the combination of HIF1α inhibitors and canonical antineoplastic agents provides a potential therapeutic alternative against medulloblastoma.