Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Mol Med ; 16(1): 152-9, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21362129

RESUMO

Erythropoietin (EPO) was shown to have protective effects after myocardial infarction (MI) by neovascularization and antiapoptotic mechanisms. Beside direct receptor-dependent mechanisms, mobilization and homing of bone marrow-derived cells (BMCs) may play a pivotal role in this regard. In this study, we intended to track different subpopulations of BMCs and to assess serially myocardial perfusion changes in EPO-treated mice after MI. To allow tracking of BMCs, we used a chimeric mouse model. Therefore, mice (C57BL/6J) were sublethally irradiated, and bone marrow (BM) from green fluorescent protein transgenic mice was transplanted. Ten weeks later coronary artery ligation was performed to induce MI. EPO was injected for 3 days with a total dose of 5000 IU/kg. Subpopulations (CD31, c-kit, CXCR-4 and Sca-1) of EGFP(+) cells were studied in peripheral blood, bone marrow and hearts by flow cytometry. Myocardial perfusion was serially investigated in vivo by pinhole single-photon emission computed tomography (SPECT) at days 6 and 30 after MI. EPO-treated animals revealed an enhanced mobilization of BMCs into peripheral blood. The numbers of these cells in BM remained unchanged. Homing of all BMCs subpopulations to the ischaemic myocardium was significantly increased in EPO-treated mice. Among the investigated subpopulations, EPO predominantly affected migration of CXCR-4(+) (4.3-fold increase). Repetitively SPECT analyses revealed a reduction of perfusion defects after EPO treatment over time. Our study shows that EPO treatment after MI enhances the migration capacity of BMCs into ischaemic tissue, which may attribute to an improved perfusion and reduced size of infarction, respectively.


Assuntos
Células da Medula Óssea/efeitos dos fármacos , Células da Medula Óssea/fisiologia , Movimento Celular/fisiologia , Eritropoetina/farmacologia , Infarto do Miocárdio/patologia , Animais , Células da Medula Óssea/citologia , Separação Celular/métodos , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fator A de Crescimento do Endotélio Vascular/sangue
2.
Acta Biochim Biophys Sin (Shanghai) ; 44(1): 92-102, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22194017

RESUMO

During mammalian development, cardiac specification and ultimately lineage commitment to a specific cardiac cell type is accomplished by the action of specific transcription factors (TFs) and their meticulous control on an epigenetic level. In this review, we detail how cardiac-specific TFs function in concert with nucleosome remodeling and histone-modifying enzymes to regulate a diverse network of genes required for processes such as cell growth and proliferation, or epithelial to mesenchymal transition (EMT), for instance. We provide examples of how several cardiac TFs, such as Nkx2.5, WHSC1, Tbx5, and Tbx1, which are associated with developmental and congenital heart defects, are required for the recruitment of histone modifiers, such as Jarid2, p300, and Ash2l, and components of ATP-dependent remodeling enzymes like Brg1, Baf60c, and Baf180. Binding of these TFs to their respective sites at cardiac genes coincides with a distinct pattern of histone marks, indicating that the precise regulation of cardiac gene networks is orchestrated by interactions between TFs and epigenetic modifiers. Furthermore, we speculate that an epigenetic signature, comprised of TF occupancy, histone modifications, and overall chromatin organization, is an underlying mechanism that governs cardiac morphogenesis and disease.


Assuntos
Epigênese Genética , Cardiopatias Congênitas/embriologia , Coração/embriologia , Anormalidades Múltiplas/genética , Animais , Síndrome CHARGE/genética , Diferenciação Celular , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , DNA Helicases/metabolismo , Síndrome de DiGeorge/genética , Células-Tronco Embrionárias/fisiologia , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Cardiopatias Congênitas/genética , Comunicação Interatrial/genética , Proteína Homeobox Nkx-2.5 , Proteínas de Homeodomínio/genética , Humanos , Deformidades Congênitas das Extremidades Inferiores/genética , Proteínas Nucleares/metabolismo , Nucleossomos/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Deformidades Congênitas das Extremidades Superiores/genética , Síndrome de Wolf-Hirschhorn/genética
3.
Exp Hematol ; 36(9): 1157-66, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18504066

RESUMO

OBJECTIVE: Cytokine-mediated mobilization of hematopoietic stem cells has become an established method in the field of autologous and allogenic stem cell transplantation. Furthermore, it presents a new concept in tissue repair and regenerative medicine. In the present study, we explored the potency of parathyroid hormone (PTH) compared to granulocyte colony-stimulating factor (G-CSF) for mobilization of stem cells and its regenerative capacity on bone marrow. MATERIALS AND METHODS: Healthy mice were either treated with PTH, G-CSF, or saline. Laboratory parameters were analyzed using a hematological cell analyzer. Hematopoietic stem cells characterized by lin(-)/Sca-1(+)/c-kit(+), as well as subpopulations (CD31(+), c-kit(+), Sca-1(+), CXCR4(+)) of CD45(+)/CD34(+) and CD45(+)/CD34(-) cells were measured by flow cytometry. Immunohistology as well as fluorescein-activated cell sorting analyses were utilized to determine the composition and cell-cycle status of bone marrow cells. Serum levels of distinct cytokines (G-CSF, vascular endothelial growth factor [VEGF]) were determined by enzyme-linked immunosorbent assay. Further, circulating cells were measured after PTH treatment in combination with G-CSF or a G-CSF antibody. RESULTS: Stimulation with PTH showed a significant increase of all characterized subpopulations of bone marrow-derived progenitor cells (BMCs) in peripheral blood (1.5- to 9.8-fold) similar to G-CSF. In contrast to G-CSF, PTH treatment resulted in an enhanced cell proliferation with a constant level of lin(-)/Sca-1(+)/c-kit(+) cells and CD45(+)/CD34(+) subpopulations in bone marrow. Interestingly, PTH application was associated with increased serum levels of G-CSF (2.8-fold), whereas VEGF showed no significant changes. Blocking endogenous G-CSF with an antibody significantly reduced the number of circulating cells after PTH treatment. A combination of PTH and G-CSF showed slight additional effects compared to PTH or G-CSF alone. CONCLUSION: PTH induces mobilization of progenitor cells effectively, which can be related to an endogenous release of G-CSF. In contrast to G-CSF treatment, PTH does not result in a depletion of bone marrow, which may be mediated by an activation of PTH receptor on osteoblasts. The novel function of PTH on mobilization and regeneration of BMCs may pave the way for new therapeutic options in bone marrow and stem cell transplantation as well as in the field of ischemic disorders.


Assuntos
Medula Óssea/efeitos dos fármacos , Mobilização de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas/efeitos dos fármacos , Hormônio Paratireóideo/fisiologia , Animais , Células da Medula Óssea/classificação , Ciclo Celular/efeitos dos fármacos , Fator Estimulador de Colônias de Granulócitos/sangue , Fator Estimulador de Colônias de Granulócitos/farmacologia , Imunofenotipagem , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Hormônio Paratireóideo/farmacologia , Fator A de Crescimento do Endotélio Vascular/sangue
4.
Exp Hematol ; 36(6): 695-702, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18346841

RESUMO

OBJECTIVE: Besides its classical function in the field of autologous and allogenic stem cell transplantation, granulocyte colony-stimulating factor (G-CSF) was shown to have protective effects after myocardial infarction (MI) by mobilization of bone marrow-derived progenitor cells (BMCs) and in addition by activation of multiple signaling pathways. In the present study, we focused on the impact of G-CSF on migration of BMCs and the impact on resident cardiac cells after MI. MATERIALS AND METHODS: Mice (C57BL/6J) were sublethally irradiated, and BM from green fluorescent protein (GFP)-transgenic mice was transplanted. Coronary artery ligation was performed 10 weeks later. G-CSF (100 microg/kg) was daily injected for 6 days. Subpopulations of enhanced GFP(+) cells in peripheral blood, bone marrow, and heart were characterized by flow cytometry. Growth factor expression in the heart was analyzed by quantitative real-time polymerase chain reaction. Perfusion was investigated in vivo by gated single photon emission computed tomography (SPECT). RESULTS: G-CSF-treated animals revealed a reduced migration of c-kit(+) and CXCR-4(+) BMCs associated with decreased expression levels of the corresponding growth factors, namely stem cell factor and stromal-derived factor-1 alpha in ischemic myocardium. In contrast, the number of resident cardiac Sca-1(+) cells was significantly increased. However, SPECT-perfusion showed no differences in infarct size between G-CSF-treated and control animals 6 days after MI. CONCLUSION: Our study shows that G-CSF treatment after MI reduces migration capacity of BMCs into ischemic tissue, but increases the number of resident cardiac cells. To optimize homing capacity a combination of G-CSF with other agents may optimize cytokine therapy after MI.


Assuntos
Transplante de Medula Óssea/métodos , Fator Estimulador de Colônias de Granulócitos/uso terapêutico , Infarto do Miocárdio/tratamento farmacológico , Infarto do Miocárdio/cirurgia , Animais , Primers do DNA , Modelos Animais de Doenças , Citometria de Fluxo , Genes Reporter , Proteínas de Fluorescência Verde/análise , Proteínas de Fluorescência Verde/genética , Mobilização de Células-Tronco Hematopoéticas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , RNA Mensageiro/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
5.
Cardiovasc Res ; 90(3): 529-37, 2011 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-21245057

RESUMO

AIMS: Parathyroid hormone (PTH) has been shown to promote stem cell mobilization into peripheral blood. Moreover, PTH treatment after myocardial infarction (MI) improved survival and myocardial function associated with enhanced homing of bone marrow-derived stem cells (BMCs). To unravel the molecular mechanisms of PTH-mediated stem cell trafficking, we analysed wild-type (wt) and green fluorescent protein (GFP)-transgenic mice after MI with respect to the pivotal stromal cell-derived factor-1 (SDF-1)/chemokine receptor type 4 (CXCR4) axis. METHODS AND RESULTS: WT and GFP-transgenic mice (C57BL/6J) were infarcted by coronary artery ligation and PTH (80 µg/kg/day) was injected for 6 days afterwards. Number of BMCs was analysed by flow cytometry. SDF-1 protein levels and activity of dipeptidyl peptidase-IV (DPP-IV) were investigated by ELISA and activity assay. Functional analyses were performed at day 30 after MI. PTH-treated animals revealed an enhanced homing of CXCR4(+) BMCs associated with an increased protein level of the corresponding homing factor SDF-1 in the ischaemic heart. In vitro and in vivo, PTH inhibited the activity of DPP-IV, which cleaves and inactivates SDF-1. Functionally, PTH significantly improved myocardial function after MI. Both stem cell homing as well as functional recovery were reversed by the CXCR4 antagonist AMD3100. CONCLUSION: In summary, PTH is a DPP-IV inhibitor leading to an increased cardiac SDF-1 level, which enhances recruitment of CXCR4(+) BMCs into the ischaemic heart associated with attenuated ischaemic cardiomyopathy. Since PTH is already clinically used our findings may have direct impact on the initiation of studies in patients with ischaemic disorders.


Assuntos
Quimiocina CXCL12/metabolismo , Dipeptidil Peptidase 4/metabolismo , Mobilização de Células-Tronco Hematopoéticas/métodos , Isquemia Miocárdica/terapia , Hormônio Paratireóideo/farmacologia , Receptores CXCR4/metabolismo , Células-Tronco Adultas/efeitos dos fármacos , Células-Tronco Adultas/metabolismo , Células-Tronco Adultas/patologia , Animais , Benzilaminas , Cardiotônicos/farmacologia , Ciclamos , Células-Tronco Hematopoéticas/efeitos dos fármacos , Células-Tronco Hematopoéticas/metabolismo , Células-Tronco Hematopoéticas/patologia , Compostos Heterocíclicos/farmacologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/patologia , Isquemia Miocárdica/prevenção & controle , Inibidores de Proteases/farmacologia , Receptores CXCR4/antagonistas & inibidores , Medicina Regenerativa/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA