Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
New Phytol ; 242(5): 1865-1875, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38538552

RESUMO

Programmed cell death (PCD) is fundamentally important for plant development, abiotic stress responses and immunity, but our understanding of its regulation remains fragmented. Building a stronger research community is required to accelerate progress in this area through knowledge exchange and constructive debate. In this Viewpoint, we aim to initiate a collective effort to integrate data across a diverse set of experimental models to facilitate characterisation of the fundamental mechanisms underlying plant PCD and ultimately aid the development of a new plant cell death classification system in the future. We also put forward our vision for the next decade of plant PCD research stemming from discussions held during the 31st New Phytologist workshop, 'The Life and Death Decisions of Plant Cells' that took place at University College Dublin in Ireland (14-15 June 2023). We convey the key areas of significant progress and possible future research directions identified, including resolving the spatiotemporal control of cell death, isolation of its molecular and genetic regulators, and harnessing technical advances for studying PCD events in plants. Further, we review the breadth of potential impacts of plant PCD research and highlight the promising new applications of findings from this dynamically evolving field.


Assuntos
Apoptose , Pesquisa , Plantas , Células Vegetais/fisiologia
2.
Plant Cell Environ ; 47(8): 2766-2779, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38251793

RESUMO

Cysteine thiols are susceptible to various oxidative posttranslational modifications (PTMs) due to their high chemical reactivity. Thiol-based PTMs play a crucial role in regulating protein functions and are key contributors to cellular redox signaling. Although reversible thiol-based PTMs, such as disulfide bond formation, S-nitrosylation, and S-glutathionylation, have been extensively studied for their roles in redox regulation, thiol sulfinic acid (-SO2H) modification is often perceived as irreversible and of marginal significance in redox signaling. Here, we revisit this narrow perspective and shed light on the redox regulatory roles of -SO2H in plant stress signaling. We provide an overview of protein sulfinylation in plants, delving into the roles of hydrogen peroxide-mediated and plant cysteine oxidase-catalyzed formation of -SO2H, highlighting the involvement of -SO2H in specific regulatory signaling pathways. Additionally, we compile the existing knowledge of the -SO2H reducing enzyme, sulfiredoxin, offering insights into its molecular mechanisms and biological relevance. We further summarize current proteomic techniques for detecting -SO2H and furnish a list of experimentally validated cysteine -SO2H sites across various species, discussing their functional consequences. This review aims to spark new insights and discussions that lead to further investigations into the functional significance of protein -SO2H-based redox signaling in plants.


Assuntos
Cisteína , Transdução de Sinais , Ácidos Sulfínicos , Cisteína/metabolismo , Cisteína/análogos & derivados , Ácidos Sulfínicos/metabolismo , Compostos de Sulfidrila/metabolismo , Plantas/metabolismo , Plantas/enzimologia , Oxirredução , Estresse Fisiológico , Processamento de Proteína Pós-Traducional
3.
Plant Cell Environ ; 47(8): 2780-2792, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38311877

RESUMO

Changes in the cellular redox balance that occur during plant responses to unfavourable environmental conditions significantly affect a myriad of redox-sensitive processes, including those that impact on the epigenetic state of the chromatin. Various epigenetic factors, like histone modifying enzymes, chromatin remodelers, and DNA methyltransferases can be targeted by oxidative posttranslational modifications. As their combined action affects the epigenetic regulation of gene expression, they form an integral part of plant responses to (a)biotic stress. Epigenetic changes triggered by unfavourable environmental conditions are intrinsically linked with primary metabolism that supplies intermediates and donors, such acetyl-CoA and S-adenosyl-methionine, that are critical for the epigenetic decoration of histones and DNA. Here, we review the recent advances in our understanding of redox regulation of chromatin remodelling, dynamics of epigenetic marks, and the interplay between epigenetic control of gene expression, redox signalling and primary metabolism within an (a)biotic stress context.


Assuntos
Montagem e Desmontagem da Cromatina , Epigênese Genética , Oxirredução , Plantas , Plantas/metabolismo , Plantas/genética , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico
4.
J Exp Bot ; 75(15): 4476-4493, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-38642390

RESUMO

Redox signalling is crucial for regulating plant development and adaptation to environmental changes. Proteins with redox-sensitive cysteines can sense oxidative stress and modulate their functions. Recent proteomics efforts have comprehensively mapped the proteins targeted by oxidative modifications. The nucleus, the epicentre of transcriptional reprogramming, contains a large number of proteins that control gene expression. Specific redox-sensitive transcription factors have long been recognized as key players in decoding redox signals in the nucleus and thus in regulating transcriptional responses. Consequently, the redox regulation of the nuclear transcription machinery and its cofactors has received less attention. In this review, we screened proteomic datasets for redox-sensitive cysteines on proteins of the core transcription complexes and chromatin modifiers in Arabidopsis thaliana. Our analysis indicates that redox regulation affects every step of gene transcription, from initiation to elongation and termination. We report previously undescribed redox-sensitive subunits in transcription complexes and discuss the emerging challenges in unravelling the landscape of redox-regulated processes involved in nuclear gene transcription.


Assuntos
Arabidopsis , Cromatina , Cisteína , Regulação da Expressão Gênica de Plantas , Oxirredução , Proteômica , Arabidopsis/genética , Arabidopsis/metabolismo , Cromatina/metabolismo , Cromatina/genética , Cisteína/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Transcrição Gênica
5.
J Exp Bot ; 75(15): 4549-4572, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-38676714

RESUMO

Redox reactions are fundamental to energy conversion in living cells, and also determine and tune responses to the environment. Within this context, the tripeptide glutathione plays numerous roles. As an important antioxidant, glutathione confers redox stability on the cell and also acts as an interface between signalling pathways and metabolic reactions that fuel growth and development. It also contributes to the assembly of cell components, biosynthesis of sulfur-containing metabolites, inactivation of potentially deleterious compounds, and control of hormonal signalling intensity. The multiplicity of these roles probably explains why glutathione status has been implicated in influencing plant responses to many different conditions. In particular, there is now a considerable body of evidence showing that glutathione is a crucial player in governing the outcome of biotic stresses. This review provides an overview of glutathione synthesis, transport, degradation, and redox turnover in plants. It examines the expression of genes associated with these processes during pathogen challenge and related conditions, and considers the diversity of mechanisms by which glutathione can influence protein function and gene expression.


Assuntos
Glutationa , Oxirredução , Plantas , Glutationa/metabolismo , Plantas/metabolismo , Transdução de Sinais , Regulação da Expressão Gênica de Plantas
6.
J Exp Bot ; 75(15): 4611-4624, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-38872385

RESUMO

Post-translational modifications (PTMs) greatly increase protein diversity and functionality. To help the plant research community interpret the ever-increasing number of reported PTMs, the Plant PTM Viewer (https://www.psb.ugent.be/PlantPTMViewer) provides an intuitive overview of plant protein PTMs and the tools to assess it. This update includes 62 novel PTM profiling studies, adding a total of 112 000 modified peptides reporting plant PTMs, including 14 additional PTM types and three species (moss, tomato, and soybean). Furthermore, an open modification re-analysis of a large-scale Arabidopsis thaliana mass spectrometry tissue atlas identified previously uncharted landscapes of lysine acylations predominant in seed and flower tissues and 3-phosphoglycerylation on glycolytic enzymes in plants. An extra 'Protein list analysis' tool was developed for retrieval and assessing the enrichment of PTMs in a protein list of interest. We conducted a protein list analysis on nuclear proteins, revealing a substantial number of redox modifications in the nucleus, confirming previous assumptions regarding the redox regulation of transcription. We encourage the plant research community to use PTM Viewer 2.0 for hypothesis testing and new target discovery, and also to submit new data to expand the coverage of conditions, plant species, and PTM types, thereby enriching our understanding of plant biology.


Assuntos
Proteínas de Plantas , Processamento de Proteína Pós-Traducional , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Plantas/metabolismo
7.
J Exp Bot ; 75(15): 4655-4670, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-38812358

RESUMO

Plants, being sessile organisms, constantly need to respond to environmental stresses, often leading to the accumulation of reactive oxygen species (ROS). While ROS can be harmful, they also act as second messengers guiding plant growth and stress responses. Because chloroplasts are sensitive to environmental changes and are both a source and a target of ROS during stress conditions, they are important in conveying environmental changes to the nucleus, where acclimation responses are coordinated to maintain organellar and overall cellular homeostasis. ANAC102 has previously been established as a regulator of ß-cyclocitral-mediated chloroplast-to-nucleus signaling, protecting plants against photooxidative stress. However, debates persist about where ANAC102 is located-in chloroplasts or in the nucleus. Our study, utilizing the genomic ANAC102 sequence driven by its native promoter, establishes ANAC102 primarily as a nuclear protein, lacking a complete N-terminal chloroplast-targeting peptide. Moreover, our research reveals the sensitivity of plants overexpressing ANAC102 to severe superoxide-induced chloroplast oxidative stress. Transcriptome analysis unraveled a dual role of ANAC102 in negatively and positively regulating genome-wide transcriptional responses to chloroplast oxidative stress. Through the integration of published data and our own study, we constructed a comprehensive transcriptional network, which suggests that ANAC102 exerts direct and indirect control over transcriptional responses through downstream transcription factor networks, providing deeper insights into the ANAC102-mediated regulatory landscape during oxidative stress.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Estresse Oxidativo , Paraquat , Fatores de Transcrição , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/fisiologia , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Paraquat/farmacologia , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Regulação da Expressão Gênica de Plantas , Cloroplastos/metabolismo
8.
Nat Commun ; 15(1): 6748, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39117606

RESUMO

To survive extreme desiccation, seeds enter a period of quiescence that can last millennia. Seed quiescence involves the accumulation of protective storage proteins and lipids through unknown adjustments in protein homeostasis (proteostasis). Here, we show that mutation of all six type-II metacaspase (MCA-II) proteases in Arabidopsis thaliana disturbs proteostasis in seeds. MCA-II mutant seeds fail to restrict the AAA ATPase CELL DIVISION CYCLE 48 (CDC48) at the endoplasmic reticulum to discard misfolded proteins, compromising seed storability. Endoplasmic reticulum (ER) localization of CDC48 relies on the MCA-IIs-dependent cleavage of PUX10 (ubiquitination regulatory X domain-containing 10), the adaptor protein responsible for titrating CDC48 to lipid droplets. PUX10 cleavage enables the shuttling of CDC48 between lipid droplets and the ER, providing an important regulatory mechanism sustaining spatiotemporal proteolysis, lipid droplet dynamics, and protein homeostasis. In turn, the removal of the PUX10 adaptor in MCA-II mutant seeds partially restores proteostasis, CDC48 localization, and lipid droplet dynamics prolonging seed lifespan. Taken together, we uncover a proteolytic module conferring seed longevity.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Retículo Endoplasmático , Gotículas Lipídicas , Mutação , Sementes , Proteína com Valosina , Arabidopsis/genética , Arabidopsis/metabolismo , Sementes/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Retículo Endoplasmático/metabolismo , Proteína com Valosina/metabolismo , Proteína com Valosina/genética , Gotículas Lipídicas/metabolismo , Proteostase , Proteólise , Regulação da Expressão Gênica de Plantas , Longevidade/fisiologia , Longevidade/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA