Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
PLoS Genet ; 8(4): e1002645, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22511885

RESUMO

Mammalian nuclear receptors broadly influence metabolic fitness and serve as popular targets for developing drugs to treat cardiovascular disease, obesity, and diabetes. However, the molecular mechanisms and regulatory pathways that govern lipid metabolism remain poorly understood. We previously found that the Caenorhabditis elegans nuclear hormone receptor NHR-49 regulates multiple genes in the fatty acid beta-oxidation and desaturation pathways. Here, we identify additional NHR-49 targets that include sphingolipid processing and lipid remodeling genes. We show that NHR-49 regulates distinct subsets of its target genes by partnering with at least two other distinct nuclear receptors. Gene expression profiles suggest that NHR-49 partners with NHR-66 to regulate sphingolipid and lipid remodeling genes and with NHR-80 to regulate genes involved in fatty acid desaturation. In addition, although we did not detect a direct physical interaction between NHR-49 and NHR-13, we demonstrate that NHR-13 also regulates genes involved in the desaturase pathway. Consistent with this, gene knockouts of these receptors display a host of phenotypes that reflect their gene expression profile. Our data suggest that NHR-80 and NHR-13's modulation of NHR-49 regulated fatty acid desaturase genes contribute to the shortened lifespan phenotype of nhr-49 deletion mutant animals. In addition, we observed that nhr-49 animals had significantly altered mitochondrial morphology and function, and that distinct aspects of this phenotype can be ascribed to defects in NHR-66- and NHR-80-mediated activities. Identification of NHR-49's binding partners facilitates a fine-scale dissection of its myriad regulatory roles in C. elegans. Our findings also provide further insights into the functions of the mammalian lipid-sensing nuclear receptors HNF4α and PPARα.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans , Metabolismo dos Lipídeos , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Ácidos Graxos Dessaturases/metabolismo , Perfilação da Expressão Gênica , Técnicas de Inativação de Genes , Redes Reguladoras de Genes , Humanos , Mitocôndrias/metabolismo , Ligação Proteica , Receptores Citoplasmáticos e Nucleares/genética , Deleção de Sequência , Transdução de Sinais , Esfingolipídeos/metabolismo
2.
PLoS Genet ; 6(11): e1001206, 2010 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-21085633

RESUMO

Obesity has a strong genetic component, but few of the genes that predispose to obesity are known. Genetic screens in invertebrates have the potential to identify genes and pathways that regulate the levels of stored fat, many of which are likely to be conserved in humans. To facilitate such screens, we have developed a simple buoyancy-based screening method for identifying mutant Drosophila larvae with increased levels of stored fat. Using this approach, we have identified 66 genes that when mutated increase organismal fat levels. Among these was a sirtuin family member, Sir2. Sirtuins regulate the storage and metabolism of carbohydrates and lipids by deacetylating key regulatory proteins. However, since mammalian sirtuins function in many tissues in different ways, it has been difficult to define their role in energy homeostasis accurately under normal feeding conditions. We show that knockdown of Sir2 in the larval fat body results in increased fat levels. Moreover, using genetic mosaics, we demonstrate that Sir2 restricts fat accumulation in individual cells of the fat body in a cell-autonomous manner. Consistent with this function, changes in the expression of metabolic enzymes in Sir2 mutants point to a shift away from catabolism. Surprisingly, although Sir2 is typically upregulated under conditions of starvation, Sir2 mutant larvae survive better than wild type under conditions of amino-acid starvation as long as sugars are provided. Our findings point to a Sir2-mediated pathway that activates a catabolic response to amino-acid starvation irrespective of the sugar content of the diet.


Assuntos
Aminoácidos/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Corpo Adiposo/metabolismo , Alimentos , Histona Desacetilases/metabolismo , Metabolismo dos Lipídeos , Mutação/genética , Sirtuínas/metabolismo , Aminoácidos/deficiência , Animais , Bioensaio , Proteínas de Drosophila/genética , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Metabolismo Energético/genética , Corpo Adiposo/citologia , Comportamento Alimentar , Regulação da Expressão Gênica , Genes de Insetos/genética , Testes Genéticos , Histona Desacetilases/genética , Larva/genética , Especificidade de Órgãos/genética , Sirtuínas/genética
3.
PLoS Genet ; 5(7): e1000553, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19668342

RESUMO

Nuclear receptors of the Hepatocyte Nuclear Factor-4 (HNF4) subtype have been linked to a host of developmental and metabolic functions in animals ranging from worms to humans; however, the full spectrum of physiological activities carried out by this nuclear receptor subfamily is far from established. We have found that the Caenorhabditis elegans nuclear receptor NHR-31, a homolog of mammalian HNF4 receptors, is required for controlling the growth and function of the nematode excretory cell, a multi-branched tubular cell that acts as the C. elegans renal system. Larval specific RNAi knockdown of nhr-31 led to significant structural abnormalities along the length of the excretory cell canal, including numerous regions of uncontrolled growth at sites near to and distant from the cell nucleus. nhr-31 RNAi animals were sensitive to acute challenge with ionic stress, implying that the osmoregulatory function of the excretory cell was also compromised. Gene expression profiling revealed a surprisingly specific role for nhr-31 in the control of multiple genes that encode subunits of the vacuolar ATPase (vATPase). RNAi of these vATPase genes resulted in excretory cell defects similar to those observed in nhr-31 RNAi animals, demonstrating that the influence of nhr-31 on excretory cell growth is mediated, at least in part, through coordinate regulation of the vATPase. Sequence analysis revealed a stunning enrichment of HNF4alpha type binding sites in the promoters of both C. elegans and mouse vATPase genes, arguing that coordinate regulation of the vATPase by HNF4 receptors is likely to be conserved in mammals. Our study establishes a new pathway for regulation of excretory cell growth and reveals a novel role for HNF4-type nuclear receptors in the development and function of a renal system.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Receptores Citoplasmáticos e Nucleares/metabolismo , ATPases Vacuolares Próton-Translocadoras/metabolismo , Animais , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Rim/crescimento & desenvolvimento , Rim/metabolismo , Família Multigênica , Receptores Citoplasmáticos e Nucleares/genética , ATPases Vacuolares Próton-Translocadoras/genética
4.
PLoS Genet ; 4(2): e1000021, 2008 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-18454197

RESUMO

In eukaryotes, RNA polymerase II (Pol(II)) dependent gene expression requires accessory factors termed transcriptional coregulators. One coregulator that universally contributes to Pol(II)-dependent transcription is the Mediator, a multisubunit complex that is targeted by many transcriptional regulatory factors. For example, the Caenorhabditis elegans Mediator subunit MDT-15 confers the regulatory actions of the sterol response element binding protein SBP-1 and the nuclear hormone receptor NHR-49 on fatty acid metabolism. Here, we demonstrate that MDT-15 displays a broader spectrum of activities, and that it integrates metabolic responses to materials ingested by C. elegans. Depletion of MDT-15 protein or mutation of the mdt-15 gene abrogated induction of specific detoxification genes in response to certain xenobiotics or heavy metals, rendering these animals hypersensitive to toxin exposure. Intriguingly, MDT-15 appeared to selectively affect stress responses related to ingestion, as MDT-15 functional defects did not abrogate other stress responses, e.g., thermotolerance. Together with our previous finding that MDT-15:NHR-49 regulatory complexes coordinate a sector of the fasting response, we propose a model whereby MDT-15 integrates several transcriptional regulatory pathways to monitor both the availability and quality of ingested materials, including nutrients and xenobiotic compounds.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Transativadores/metabolismo , Adaptação Fisiológica , Animais , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/antagonistas & inibidores , Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/genética , Alimentos , Perfilação da Expressão Gênica , Genes de Helmintos , Resposta ao Choque Térmico/genética , Resposta ao Choque Térmico/fisiologia , Inativação Metabólica , Metabolismo dos Lipídeos , Metais Pesados/metabolismo , Metais Pesados/toxicidade , Modelos Biológicos , Mutação , Subunidades Proteicas , Interferência de RNA , Transativadores/antagonistas & inibidores , Transativadores/química , Transativadores/genética , Xenobióticos/metabolismo , Xenobióticos/toxicidade
5.
PLoS Biol ; 3(2): e53, 2005 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-15719061

RESUMO

Mammalian nuclear hormone receptors (NHRs), such as liver X receptor, farnesoid X receptor, and peroxisome proliferator-activated receptors (PPARs), precisely control energy metabolism. Consequently, these receptors are important targets for the treatment of metabolic diseases, including diabetes and obesity. A thorough understanding of NHR fat regulatory networks has been limited, however, by a lack of genetically tractable experimental systems. Here we show that deletion of the Caenorhabditis elegans NHR gene nhr-49 yielded worms with elevated fat content and shortened life span. Employing a quantitative RT-PCR screen, we found that nhr-49 influenced the expression of 13 genes involved in energy metabolism. Indeed, nhr-49 served as a key regulator of fat usage, modulating pathways that control the consumption of fat and maintain a normal balance of fatty acid saturation. We found that the two phenotypes of the nhr-49 knockout were linked to distinct pathways and were separable: The high-fat phenotype was due to reduced expression of enzymes in fatty acid beta-oxidation, and the shortened adult life span resulted from impaired expression of a stearoyl-CoA desaturase. Despite its sequence relationship with the mammalian hepatocyte nuclear factor 4 receptor, the biological activities of nhr-49 were most similar to those of the mammalian PPARs, implying an evolutionarily conserved role for NHRs in modulating fat consumption and composition. Our findings in C. elegans provide novel insights into how NHR regulatory networks are coordinated to govern fat metabolism.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Ácidos Graxos/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Metabolismo Energético/genética , Ácidos Graxos/química , Mitocôndrias/genética , Mitocôndrias/metabolismo , Receptores Citoplasmáticos e Nucleares/química , Receptores Citoplasmáticos e Nucleares/genética
6.
Cell Death Differ ; 24(10): 1730-1738, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28644434

RESUMO

Aggregation of cytosolic proteins is a pathological finding in disease states, including ageing and neurodegenerative diseases. We have previously reported that hypoxia induces protein misfolding in Caenorhabditis elegans mitochondria, and electron micrographs suggested protein aggregates. Here, we seek to determine whether mitochondrial proteins actually aggregate after hypoxia and other cellular stresses. To enrich for mitochondrial proteins that might aggregate, we performed a proteomics analysis on purified C. elegans mitochondria to identify relatively insoluble proteins under normal conditions (110 proteins identified) or after sublethal hypoxia (65 proteins). A GFP-tagged mitochondrial protein (UCR-11 - a complex III electron transport chain protein) in the normally insoluble set was found to form widespread aggregates in mitochondria after hypoxia. Five other GFP-tagged mitochondrial proteins in the normally insoluble set similarly form hypoxia-induced aggregates. Two GFP-tagged mitochondrial proteins from the soluble set as well as a mitochondrial-targeted GFP did not form aggregates. Ageing also resulted in aggregates. The number of hypoxia-induced aggregates was regulated by the mitochondrial unfolded protein response (UPRmt) master transcriptional regulator ATFS-1, which has been shown to be hypoxia protective. An atfs-1(loss-of-function) mutant and RNAi construct reduced the number of aggregates while an atfs-1(gain-of-function) mutant increased aggregates. Our work demonstrates that mitochondrial protein aggregation occurs with hypoxic injury and ageing in C. elegans. The UPRmt regulates aggregation and may protect from hypoxia by promoting aggregation of misfolded proteins.


Assuntos
Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Envelhecimento , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/metabolismo , Doenças Neurodegenerativas/metabolismo , Oxigênio/metabolismo , Fatores de Transcrição/metabolismo , Resposta a Proteínas não Dobradas/fisiologia
7.
J Mol Biol ; 348(5): 1039-57, 2005 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-15854643

RESUMO

The N protein of bacteriophage lambda activates transcription of genes that lie downstream of termination sequences by suppressing transcription termination. N binds to specific (boxB) and non-specific sites on the transcript RNA and contacts RNA polymerase via cis-RNA looping, resulting in "antitermination" of transcription. To find the effect of N-boxB binding on antitermination, we quantitatively relate binding measurements made in isolation to in vitro antitermination activity. We measure binding of N to boxB RNA, non-specific single-stranded RNA, and non-specific double-stranded DNA fluorimetrically, and use an equilibrium model to describe quantitatively the binding of N to nucleic acids of Escherichia coli transcription elongation complexes. We then test the model by comparison with in vitro N antitermination activity measured in reactions containing these same elongation complexes. We find that binding of N protein to the nucleic acid components of transcription elongation complexes can quantitatively predict antitermination activity, suggesting that antitermination in vitro is determined by a nucleic acid binding equilibrium with one molecule of N protein per RNA transcript being sufficient for antitermination. Elongation complexes contain numerous overlapping non-specific RNA and DNA-binding sites for N; the large number of sites compensates for the low N binding affinity, so multiple N proteins are expected to bind to elongation complexes. The occupancy/activity of these proteins is described by a binomial distribution of proteins on transcripts containing multiple non-specific sites. The contribution of specific (boxB) binding to activity also depends on this distribution. Specificity is not measured accurately by measurements made in the presence and in the absence of boxB. We find that antitermination is inhibited by non-productive binding of N to non-specific sites on template DNA, and that NusA protein covers RNA sites on the transcript, limiting N access and activity. The activity and specificity of regulatory proteins that loop from high-affinity binding sites are likely modulated by multiple non-specific binding events; in vivo activity may also be regulated by the modulation of non-specific binding.


Assuntos
Bacteriófago lambda/genética , Regulação Viral da Expressão Gênica , Proteínas de Ligação a RNA/fisiologia , Transcrição Gênica , Proteínas Virais Reguladoras e Acessórias/fisiologia , Bacteriófago lambda/fisiologia , DNA/genética , DNA/metabolismo , Proteínas de Escherichia coli , Fatores de Alongamento de Peptídeos/metabolismo , Fatores de Alongamento de Peptídeos/fisiologia , RNA Viral/metabolismo , Proteínas de Ligação a RNA/genética , Regiões Terminadoras Genéticas/genética , Regiões Terminadoras Genéticas/fisiologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Fatores de Transcrição/fisiologia , Fatores de Elongação da Transcrição , Proteínas Virais Reguladoras e Acessórias/genética , Proteínas Virais Reguladoras e Acessórias/metabolismo
8.
PLoS One ; 9(3): e92552, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24651852

RESUMO

Metazoan transcription factors control distinct networks of genes in specific tissues, yet understanding how these networks are integrated into physiology, development, and homeostasis remains challenging. Inactivation of the nuclear hormone receptor nhr-25 ameliorates developmental and metabolic phenotypes associated with loss of function of an acyl-CoA synthetase gene, acs-3. ACS-3 activity prevents aberrantly high NHR-25 activity. Here, we investigated this relationship further by examining gene expression patterns following acs-3 and nhr-25 inactivation. Unexpectedly, we found that the acs-3 mutation or nhr-25 RNAi resulted in similar transcriptomes with enrichment in innate immunity and stress response gene expression. Mutants of either gene exhibited distinct sensitivities to pathogens and environmental stresses. Only nhr-25 was required for wild-type levels of resistance to the bacterial pathogen P. aeruginosa and only acs-3 was required for wild-type levels of resistance to osmotic stress and the oxidative stress generator, juglone. Inactivation of either acs-3 or nhr-25 compromised lifespan and resistance to the fungal pathogen D. coniospora. Double mutants exhibited more severe defects in the lifespan and P. aeruginosa assays, but were similar to the single mutants in other assays. Finally, acs-3 mutants displayed defects in their epidermal surface barrier, potentially accounting for the observed sensitivities. Together, these data indicate that inactivation of either acs-3 or nhr-25 causes stress sensitivity and increased expression of innate immunity/stress genes, most likely by different mechanisms. Elevated expression of these immune/stress genes appears to abrogate the transcriptional signatures relevant to metabolism and development.


Assuntos
Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Coenzima A Ligases/deficiência , Proteínas de Ligação a DNA/deficiência , Estresse Fisiológico , Fatores de Transcrição/deficiência , Animais , Animais Geneticamente Modificados , Peptídeos Catiônicos Antimicrobianos/genética , Caenorhabditis elegans/imunologia , Coenzima A Ligases/genética , Coenzima A Ligases/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica , Técnicas de Inativação de Genes , Estudos de Associação Genética , Longevidade/genética , Mutação , Fenótipo , Interferência de RNA , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Transcriptoma
9.
PLoS One ; 7(10): e45049, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23071506

RESUMO

Preservation of both the integrity and fluidity of biological membranes is a critical cellular homeostatic function. Signaling pathways that govern lipid bilayer fluidity have long been known in bacteria, yet no such pathways have been identified in eukaryotes. Here we identify mutants of the yeast Saccharomyces cerevisiae whose growth is differentially influenced by its two principal unsaturated fatty acids, oleic and palmitoleic acid. Strains deficient in the core components of the cell wall integrity (CWI) pathway, a MAP kinase pathway dependent on both Pkc1 (yeast's sole protein kinase C) and Rho1 (the yeast RhoA-like small GTPase), were among those inhibited by palmitoleate yet stimulated by oleate. A single GEF (Tus1) and a single GAP (Sac7) of Rho1 were also identified, neither of which participate in the CWI pathway. In contrast, key components of the CWI pathway, such as Rom2, Bem2 and Rlm1, failed to influence fatty acid sensitivity. The differential influence of palmitoleate and oleate on growth of key mutants correlated with changes in membrane fluidity measured by fluorescence anisotropy of TMA-DPH, a plasma membrane-bound dye. This work provides the first evidence for the existence of a signaling pathway that enables eukaryotic cells to control membrane fluidity, a requirement for division, differentiation and environmental adaptation.


Assuntos
Homeostase/fisiologia , Fluidez de Membrana/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Saccharomyces cerevisiae/fisiologia , Transdução de Sinais/fisiologia , Proteínas rho de Ligação ao GTP/fisiologia , Ácidos Graxos Monoinsaturados/metabolismo , Ácido Oleico/fisiologia , Proteína Quinase C/fisiologia , Saccharomyces cerevisiae/efeitos dos fármacos , Saccharomyces cerevisiae/genética
10.
Cell Metab ; 12(4): 398-410, 2010 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-20889131

RESUMO

Acyl-CoA synthases are important for lipid synthesis and breakdown, generation of signaling molecules, and lipid modification of proteins, highlighting the challenge of understanding metabolic pathways within intact organisms. From a C. elegans mutagenesis screen, we found that loss of ACS-3, a long-chain acyl-CoA synthase, causes enhanced intestinal lipid uptake, de novo fat synthesis, and accumulation of enlarged, neutral lipid-rich intestinal depots. Here, we show that ACS-3 functions in seam cells, epidermal cells anatomically distinct from sites of fat uptake and storage, and that acs-3 mutant phenotypes require the nuclear hormone receptor NHR-25, a key regulator of C. elegans molting. Our findings suggest that ACS-3-derived long-chain fatty acyl-CoAs, perhaps incorporated into complex ligands such as phosphoinositides, modulate NHR-25 function, which in turn regulates an endocrine program of lipid uptake and synthesis. These results reveal a link between acyl-CoA synthase function and an NR5A family nuclear receptor in C. elegans.


Assuntos
Caenorhabditis elegans/metabolismo , Coenzima A Ligases/fisiologia , Proteínas de Ligação a DNA/fisiologia , Gorduras/metabolismo , Fatores de Transcrição/fisiologia , Animais , Coenzima A Ligases/genética , Mucosa Intestinal/metabolismo , Lipídeos/biossíntese , Mutagênese Sítio-Dirigida , Receptores Citoplasmáticos e Nucleares
11.
Science ; 326(5955): 954-8, 2009 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-19713489

RESUMO

The study of starvation-resistant biological programs has elucidated numerous mechanisms influencing aging. Here we present the discovery and characterization of starvation-induced adult reproductive diapause (ARD) in Caenorhabditis elegans. ARD differs from the C. elegans dauer diapause in that it enables sexually mature adults to delay reproductive onset 15-fold and extend total adult life span at least threefold. The effectiveness of ARD requires apoptotic death of the entire germ line, except for a small population of protected germline stem cells (GSCs). When feeding is resumed, surviving GSCs regenerate a new germ line capable of offspring production near the level of nonstarved animals. The starvation-sensing nuclear receptor NHR-49 is required for ARD entry and recovery. Our findings establish mechanisms for preserving stem cell potency and reproductive potential during prolonged starvation.


Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/crescimento & desenvolvimento , Caenorhabditis elegans/fisiologia , Células Germinativas/fisiologia , Receptores Citoplasmáticos e Nucleares/fisiologia , Células-Tronco/fisiologia , Envelhecimento , Animais , Apoptose , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Caspases/genética , Caspases/fisiologia , Desenvolvimento Embrionário , Células Germinativas/citologia , Larva/crescimento & desenvolvimento , Larva/fisiologia , Longevidade , Mutação , Receptores Citoplasmáticos e Nucleares/genética , Reprodução , Transdução de Sinais , Inanição , Estresse Fisiológico
12.
Cell Metab ; 8(3): 266-74, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18762027

RESUMO

Although studies in C. elegans have identified numerous genes involved in fat storage, the next step is to determine how these factors actually affect in vivo lipid metabolism. We have developed a (13)C isotope assay to quantify the contribution of dietary fat absorption and de novo synthesis to fat storage and membrane lipid production in C. elegans, establishing the means by which worms obtain and process fatty acids. We applied this method to characterize how insulin signaling affects lipid physiology. Several long-lived mutations in the insulin receptor gene daf-2 resulted in significantly higher levels of synthesized fats in triglycerides and phospholipids. This elevation of fat synthesis was completely dependent upon daf-16/FoxO. Other long-lived alleles of daf-2 did not increase fat synthesis, however, suggesting that site-specific mutations in the insulin receptor can differentially influence longevity and metabolism, and that elevated lipid synthesis is not required for the longevity of daf-2 mutants.


Assuntos
Caenorhabditis elegans/metabolismo , Insulina/metabolismo , Lipogênese/fisiologia , Transdução de Sinais/fisiologia , Alelos , Animais , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Isótopos de Carbono , Ácidos Graxos/biossíntese , Ácidos Graxos/metabolismo , Fatores de Transcrição Forkhead , Marcação por Isótopo , Lipídeos/fisiologia , Lipídeos de Membrana/biossíntese , Receptor de Insulina/genética , Receptor de Insulina/metabolismo , Fatores de Transcrição/metabolismo
13.
Cell Metab ; 8(2): 118-31, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18680713

RESUMO

A major challenge in understanding energy balance is deciphering the neural and molecular circuits that govern behavioral, physiological, and metabolic responses of animals to fluctuating environmental conditions. The neurally expressed TGF-beta ligand DAF-7 functions as a gauge of environmental conditions to modulate energy balance in C. elegans. We show that daf-7 signaling regulates fat metabolism and feeding behavior through a compact neural circuit that allows for integration of multiple inputs and the flexibility for differential regulation of outputs. In daf-7 mutants, perception of depleting food resources causes fat accumulation despite reduced feeding rate. This fat accumulation is mediated, in part, through neural metabotropic glutamate signaling and upregulation of peripheral endogenous biosynthetic pathways that direct energetic resources into fat reservoirs. Thus, neural perception of adverse environmental conditions can promote fat accumulation without a concomitant increase in feeding rate.


Assuntos
Regulação do Apetite/fisiologia , Caenorhabditis elegans/metabolismo , Comportamento Alimentar/fisiologia , Metabolismo dos Lipídeos/fisiologia , Sistema Nervoso/metabolismo , Neurônios Aferentes/metabolismo , Adaptação Fisiológica/fisiologia , Tecido Adiposo/metabolismo , Animais , Caenorhabditis elegans/citologia , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Metabolismo Energético/fisiologia , Meio Ambiente , Modelos Animais , Mutação/genética , Sistema Nervoso/citologia , Vias Neurais/citologia , Vias Neurais/metabolismo , Neurônios Aferentes/citologia , Receptores de Glutamato Metabotrópico/metabolismo , Inanição/metabolismo , Fator de Crescimento Transformador beta/genética , Fator de Crescimento Transformador beta/metabolismo
14.
Genes Dev ; 20(9): 1137-49, 2006 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-16651656

RESUMO

The Caenorhabditis elegans Nuclear Hormone Receptor NHR-49 coordinates expression of fatty acid (FA) metabolic genes during periods of feeding and in response to fasting. Here we report the identification of MDT-15, a subunit of the C. elegans Mediator complex, as an NHR-49-interacting protein and transcriptional coactivator. Knockdown of mdt-15 by RNA interference (RNAi) prevented fasting-induced mRNA accumulation of NHR-49 targets in vivo, and fasting-independent expression of other NHR-49 target genes, including two FA-Delta9-desaturases (fat-5, fat-7). Interestingly, mdt-15 RNAi affected additional FA-metabolism genes (including the third FA-Delta9-desaturase, fat-6) that are regulated independently of NHR-49, suggesting that distinct unidentified regulatory factors also recruit MDT-15 to selectively modulate metabolic gene expression. The deregulation of FA-Delta9-desaturases by knockdown of mdt-15 correlated with dramatically decreased levels of unsaturated FAs and multiple deleterious phenotypes (short life span, sterility, uncoordinated locomotion, and morphological defects). Importantly, dietary addition of specific polyunsaturated FAs partially suppressed these pleiotropic phenotypes. Thus, failure to properly govern FA-Delta9-desaturation contributed to decreased nematode viability. Our findings imply that a single subunit of the Mediator complex, MDT-15, integrates the activities of several distinct regulatory factors to coordinate metabolic and hormonal regulation of FA metabolism.


Assuntos
Proteínas de Caenorhabditis elegans/fisiologia , Caenorhabditis elegans/fisiologia , Ácidos Graxos/metabolismo , Receptores Citoplasmáticos e Nucleares/fisiologia , Animais , Caenorhabditis elegans/embriologia , Caenorhabditis elegans/crescimento & desenvolvimento , Proteínas de Caenorhabditis elegans/biossíntese , Proteínas de Caenorhabditis elegans/genética , Metabolismo Energético , Jejum , Ácidos Graxos Dessaturases/metabolismo , Subunidades Proteicas/genética , Subunidades Proteicas/fisiologia , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , Receptores Citoplasmáticos e Nucleares/biossíntese , Receptores Citoplasmáticos e Nucleares/genética , Transdução de Sinais
15.
Proc Natl Acad Sci U S A ; 102(38): 13496-501, 2005 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-16157872

RESUMO

Appropriate response to nutritional stress is critical for animal survival and metabolic health. To better understand regulatory networks that sense and respond to nutritional availability, we developed a quantitative RT-PCR strategy to monitor changes in metabolic gene expression resulting from short-term food deprivation (fasting) in Caenorhabditis elegans. Examining 97 fat and glucose metabolism genes in fed and fasted animals, we identified 18 genes significantly influenced by food withdrawal in all developmental stages. Fasting response genes fell into multiple kinetic classes, with some genes showing significant activation or repression just 1 h after food was removed. As expected, fasting stimulated the expression of genes involved in mobilizing fats for energy production, including mitochondrial beta-oxidation genes. Surprisingly, however, we found that other mitochondrial beta-oxidation genes were repressed by food deprivation. Fasting also affected genes involved in mono- and polyunsaturated fatty acid synthesis: four desaturases were induced, and one stearoyl-CoA desaturase (SCD) was strongly repressed. Accordingly, fasted animals displayed considerable changes in fatty acid composition. Finally, nuclear receptor nhr-49 played a key role in nutritional response, enabling induction of beta-oxidation genes upon food deprivation and facilitating activation of SCD in fed animals. Our characterization of a fasting response system and our finding that nhr-49 regulates a sector within this system provide insight into the mechanisms by which animals respond to nutritional signals.


Assuntos
Proteínas de Caenorhabditis elegans/biossíntese , Caenorhabditis elegans/fisiologia , Privação de Alimentos/fisiologia , Regulação da Expressão Gênica/fisiologia , Receptores Citoplasmáticos e Nucleares/biossíntese , Transdução de Sinais/fisiologia , Animais , Proteínas de Caenorhabditis elegans/genética , Ácidos Graxos Insaturados/biossíntese , Perfilação da Expressão Gênica , Mitocôndrias/metabolismo , Oxirredução , Receptores Citoplasmáticos e Nucleares/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Estearoil-CoA Dessaturase/biossíntese , Estearoil-CoA Dessaturase/genética
16.
Genes Dev ; 18(20): 2529-44, 2004 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-15489294

RESUMO

Intracellular receptor DAF-12 regulates dauer formation and developmental age and affects Caenorhabditis elegans lifespan. Genetic analyses place DAF-12 at the convergence of several signal transduction pathways; however, the downstream effectors and the molecular basis for the receptor's multiple physiological outputs are unknown. Beginning with C. elegans genomic DNA, we devised a procedure for multiple rounds of selection and amplification that yielded fragments bearing DAF-12-binding sites. These genomic fragments mediated DAF-12-dependent transcriptional regulation both in Saccharomyces cerevisiae and in C. elegans; that is, they served as functional DAF-12 response elements. We determined that most of the genomic fragments that displayed DAF-12 response element activity in yeast were linked to genes that were regulated by DAF-12 in C. elegans; indeed, the response element-containing fragments typically resided within clusters of DAF-12-regulated genes. DAF-12 target gene regulation was developmental program and stage specific, potentially predicting a fit of these targets into regulatory networks governing aspects of C. elegans reproductive development and dauer formation.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Regulação da Expressão Gênica , Genes Reguladores/fisiologia , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Elementos de Resposta/genética , Animais , Sequência de Bases , Sítios de Ligação/fisiologia , Caenorhabditis elegans , Proteínas de Caenorhabditis elegans/fisiologia , Polarização de Fluorescência , Genes Reguladores/genética , Genes Reporter/genética , Proteínas de Fluorescência Verde , Dados de Sequência Molecular , Oligonucleotídeos , Receptores Citoplasmáticos e Nucleares/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Saccharomyces cerevisiae , Análise de Sequência de DNA , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA