Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
1.
Nat Immunol ; 23(6): 878-891, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35618831

RESUMO

The ability of immune-modulating biologics to prevent and reverse pathology has transformed recent clinical practice. Full utility in the neuroinflammation space, however, requires identification of both effective targets for local immune modulation and a delivery system capable of crossing the blood-brain barrier. The recent identification and characterization of a small population of regulatory T (Treg) cells resident in the brain presents one such potential therapeutic target. Here, we identified brain interleukin 2 (IL-2) levels as a limiting factor for brain-resident Treg cells. We developed a gene-delivery approach for astrocytes, with a small-molecule on-switch to allow temporal control, and enhanced production in reactive astrocytes to spatially direct delivery to inflammatory sites. Mice with brain-specific IL-2 delivery were protected in traumatic brain injury, stroke and multiple sclerosis models, without impacting the peripheral immune system. These results validate brain-specific IL-2 gene delivery as effective protection against neuroinflammation, and provide a versatile platform for delivery of diverse biologics to neuroinflammatory patients.


Assuntos
Astrócitos , Produtos Biológicos , Animais , Encéfalo , Humanos , Interleucina-2/genética , Interleucinas , Camundongos , Doenças Neuroinflamatórias , Linfócitos T Reguladores
2.
Immunity ; 55(11): 2085-2102.e9, 2022 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-36228615

RESUMO

Microglia and border-associated macrophages (BAMs) are brain-resident self-renewing cells. Here, we examined the fate of microglia, BAMs, and recruited macrophages upon neuroinflammation and through resolution. Upon infection, Trypanosoma brucei parasites invaded the brain via its border regions, triggering brain barrier disruption and monocyte infiltration. Fate mapping combined with single-cell sequencing revealed microglia accumulation around the ventricles and expansion of epiplexus cells. Depletion experiments using genetic targeting revealed that resident macrophages promoted initial parasite defense and subsequently facilitated monocyte infiltration across brain barriers. These recruited monocyte-derived macrophages outnumbered resident macrophages and exhibited more transcriptional plasticity, adopting antimicrobial gene expression profiles. Recruited macrophages were rapidly removed upon disease resolution, leaving no engrafted monocyte-derived cells in the parenchyma, while resident macrophages progressively reverted toward a homeostatic state. Long-term transcriptional alterations were limited for microglia but more pronounced in BAMs. Thus, brain-resident and recruited macrophages exhibit diverging responses and dynamics during infection and resolution.


Assuntos
Macrófagos , Doenças Neuroinflamatórias , Humanos , Macrófagos/metabolismo , Monócitos/metabolismo , Microglia/metabolismo , Encéfalo
3.
EMBO J ; 42(17): e111515, 2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37427561

RESUMO

Accumulating evidence indicates that gut microbiota dysbiosis is associated with increased blood-brain barrier (BBB) permeability and contributes to Alzheimer's disease (AD) pathogenesis. In contrast, the influence of gut microbiota on the blood-cerebrospinal fluid (CSF) barrier has not yet been studied. Here, we report that mice lacking gut microbiota display increased blood-CSF barrier permeability associated with disorganized tight junctions (TJs), which can be rescued by recolonization with gut microbiota or supplementation with short-chain fatty acids (SCFAs). Our data reveal that gut microbiota is important not only for the establishment but also for the maintenance of a tight barrier. Also, we report that the vagus nerve plays an important role in this process and that SCFAs can independently tighten the barrier. Administration of SCFAs in AppNL-G-F mice improved the subcellular localization of TJs at the blood-CSF barrier, reduced the ß-amyloid (Aß) burden, and affected microglial phenotype. Altogether, our results suggest that modulating the microbiota and administering SCFAs might have therapeutic potential in AD via blood-CSF barrier tightening and maintaining microglial activity and Aß clearance.


Assuntos
Doença de Alzheimer , Microbioma Gastrointestinal , Microbiota , Camundongos , Animais , Barreira Hematoencefálica/patologia , Microbioma Gastrointestinal/fisiologia , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides , Ácidos Graxos Voláteis
4.
Nat Methods ; 18(9): 1013-1026, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34446922

RESUMO

Extracellular vesicles (EVs) are nano-sized lipid bilayer vesicles released by virtually every cell type. EVs have diverse biological activities, ranging from roles in development and homeostasis to cancer progression, which has spurred the development of EVs as disease biomarkers and drug nanovehicles. Owing to the small size of EVs, however, most studies have relied on isolation and biochemical analysis of bulk EVs separated from biofluids. Although informative, these approaches do not capture the dynamics of EV release, biodistribution, and other contributions to pathophysiology. Recent advances in live and high-resolution microscopy techniques, combined with innovative EV labeling strategies and reporter systems, provide new tools to study EVs in vivo in their physiological environment and at the single-vesicle level. Here we critically review the latest advances and challenges in EV imaging, and identify urgent, outstanding questions in our quest to unravel EV biology and therapeutic applications.


Assuntos
Vesículas Extracelulares , Microscopia/métodos , Animais , Corantes/química , Epitopos , Vesículas Extracelulares/química , Vesículas Extracelulares/patologia , Vesículas Extracelulares/fisiologia , Corantes Fluorescentes/química , Humanos
5.
Brain Behav Immun ; 117: 122-134, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38142916

RESUMO

Alzheimer's disease (AD) is a devastating neurodegenerative disorder characterized by a concerning rise in prevalence. It is projected that the number of affected individuals will reach a staggering 150 million by 2050. While recent advancements in monoclonal antibodies targeting Aß have shown some clinical effects, there is an urgent need for improved therapies to effectively address the impeding surge of AD patients worldwide. To achieve this, a deeper understanding of the intricate mechanisms underlying the disease is crucial. In recent years, mounting evidence has underscored the vital role of the innate immune system in AD pathology. However, limited findings persist regarding the involvement of the adaptive immune system. Here, we report on the impact of the adaptive immune system on various aspects of AD by using AppNL-G-F mice crossed into a Rag2-/- background lacking mature adaptive immune cells. In addition, to simulate the continuous exposure to various challenges such as infections that is commonly observed in humans, the innate immune system was activated through the repetitive induction of peripheral inflammation. We observed a remarkably improved performance on complex cognitive tasks when a mature adaptive immune system is absent. Notably, this observation is pathologically associated with lower Aß plaque accumulation, reduced glial activation, and better-preserved neuronal networks in the mice lacking a mature adaptive immune system. Collectively, these findings highlight the detrimental role of the adaptive immune system in AD and underscore the need for effective strategies to modulate it for therapeutic purposes.


Assuntos
Doença de Alzheimer , Humanos , Animais , Camundongos , Anticorpos Monoclonais , Sistema Imunitário , Inflamação , Placa Amiloide
6.
Immunity ; 43(1): 200-9, 2015 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-26163370

RESUMO

Targeted mutagenesis in mice is a powerful tool for functional analysis of genes. However, genetic variation between embryonic stem cells (ESCs) used for targeting (previously almost exclusively 129-derived) and recipient strains (often C57BL/6J) typically results in congenic mice in which the targeted gene is flanked by ESC-derived passenger DNA potentially containing mutations. Comparative genomic analysis of 129 and C57BL/6J mouse strains revealed indels and single nucleotide polymorphisms resulting in alternative or aberrant amino acid sequences in 1,084 genes in the 129-strain genome. Annotating these passenger mutations to the reported genetically modified congenic mice that were generated using 129-strain ESCs revealed that nearly all these mice possess multiple passenger mutations potentially influencing the phenotypic outcome. We illustrated this phenotypic interference of 129-derived passenger mutations with several case studies and developed a Me-PaMuFind-It web tool to estimate the number and possible effect of passenger mutations in transgenic mice of interest.


Assuntos
Variação Genética/genética , Genoma/genética , Camundongos Endogâmicos C57BL/genética , Sequência de Aminoácidos/genética , Animais , Caspases/genética , Caspases Iniciadoras , Mapeamento Cromossômico , Hibridização Genômica Comparativa , Conexinas/genética , Genótipo , Metaloproteinase 13 da Matriz/genética , Metaloproteinase 8 da Matriz/genética , Camundongos , Camundongos Congênicos/genética , Camundongos Knockout , Mutação/genética , Proteínas do Tecido Nervoso/genética , Polimorfismo de Nucleotídeo Único
7.
EMBO J ; 38(17): e100481, 2019 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-31304985

RESUMO

Regulation of adult neural stem cell (NSC) number is critical for lifelong neurogenesis. Here, we identified a post-transcriptional control mechanism, centered around the microRNA 204 (miR-204), to control the maintenance of quiescent (q)NSCs. miR-204 regulates a spectrum of transcripts involved in cell cycle regulation, neuronal migration, and differentiation in qNSCs. Importantly, inhibition of miR-204 function reduced the number of qNSCs in the subependymal zone (SEZ) by inducing pre-mature activation and differentiation of NSCs without changing their neurogenic potential. Strikingly, we identified the choroid plexus of the mouse lateral ventricle as the major source of miR-204 that is released into the cerebrospinal fluid to control number of NSCs within the SEZ. Taken together, our results describe a novel mechanism to maintain adult somatic stem cells by a niche-specific miRNA repressing activation and differentiation of stem cells.


Assuntos
Plexo Corióideo/química , MicroRNAs/genética , Células-Tronco Neurais/citologia , Adulto , Animais , Ciclo Celular , Diferenciação Celular , Movimento Celular , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Camundongos , MicroRNAs/líquido cefalorraquidiano , Pessoa de Meia-Idade , Células-Tronco Neurais/química , Nicho de Células-Tronco
8.
J Neuroinflammation ; 20(1): 130, 2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37248507

RESUMO

Hepatic encephalopathy (HE) is a common complication of liver cirrhosis, associated with high morbidity and mortality, for which no brain-targeted therapies exist at present. The interplay between hyperammonemia and inflammation is thought to drive HE development. As such, astrocytes, the most important ammonia-metabolizing cells in the brain, and microglia, the main immunomodulatory cells in the brain, have been heavily implicated in HE development. As insight into cellular perturbations driving brain pathology remains largely elusive, we aimed to investigate cell-type specific transcriptomic changes in the HE brain. In the recently established mouse bile duct ligation (BDL) model of HE, we performed RNA-Seq of sorted astrocytes and microglia at 14 and 28 days after induction. This revealed a marked transcriptional response in both cell types which was most pronounced in microglia. In both cell types, pathways related to inflammation and hypoxia, mechanisms commonly implicated in HE, were enriched. Additionally, astrocytes exhibited increased corticoid receptor and oxidative stress signaling, whereas microglial transcriptome changes were linked to immune cell attraction. Accordingly, both monocytes and neutrophils accumulated in the BDL mouse brain. Time-dependent changes were limited in both cell types, suggesting early establishment of a pathological phenotype. While HE is often considered a unique form of encephalopathy, astrocytic and microglial transcriptomes showed significant overlap with previously established gene expression signatures in other neuroinflammatory diseases like septic encephalopathy and stroke, suggesting common pathophysiological mechanisms. Our dataset identifies key molecular mechanisms involved in preclinical HE and provides a valuable resource for development of novel glial-directed therapeutic strategies.


Assuntos
Encefalopatia Hepática , Camundongos , Animais , Encefalopatia Hepática/etiologia , Modelos Animais de Doenças , Encéfalo/metabolismo , Inflamação/patologia , Cirrose Hepática/complicações
9.
Int J Mol Sci ; 22(21)2021 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-34768765

RESUMO

The exact etiology of Parkinson's disease (PD) remains largely unknown, but more and more research suggests the involvement of the gut microbiota. Interestingly, idiopathic PD patients were shown to have at least a 10 times higher prevalence of Helicobacter suis (H. suis) DNA in gastric biopsies compared to control patients. H. suis is a zoonotic Helicobacter species that naturally colonizes the stomach of pigs and non-human primates but can be transmitted to humans. Here, we investigated the influence of a gastric H. suis infection on PD disease progression through a 6-hydroxydopamine (6-OHDA) mouse model. Therefore, mice with either a short- or long-term H. suis infection were stereotactically injected with 6-OHDA in the left striatum and sampled one week later. Remarkably, a reduced loss of dopaminergic neurons was seen in the H. suis/6-OHDA groups compared to the control/6-OHDA groups. Correspondingly, motor function of the H. suis-infected 6-OHDA mice was superior to that in the non-infected 6-OHDA mice. Interestingly, we also observed higher expression levels of antioxidant genes in brain tissue from H. suis-infected 6-OHDA mice, as a potential explanation for the reduced 6-OHDA-induced cell loss. Our data support an unexpected neuroprotective effect of gastric H. suis on PD pathology, mediated through changes in oxidative stress.


Assuntos
Infecções por Helicobacter , Helicobacter heilmannii/fisiologia , Doença de Parkinson/microbiologia , Estômago/microbiologia , Animais , Modelos Animais de Doenças , Neurônios Dopaminérgicos/efeitos dos fármacos , Neurônios Dopaminérgicos/microbiologia , Feminino , Gliose/induzido quimicamente , Gliose/microbiologia , Helicobacter heilmannii/crescimento & desenvolvimento , Inflamação/microbiologia , Camundongos , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Fármacos Neuroprotetores , Estresse Oxidativo/fisiologia , Oxidopamina/toxicidade , Doença de Parkinson/complicações , Doença de Parkinson/patologia , Peroxidases/genética , Peroxidases/metabolismo , Gastropatias/fisiopatologia
10.
Glia ; 68(12): 2643-2660, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32645232

RESUMO

Increasing evidence suggests that functional impairments at the level of the neurovascular unit (NVU) underlie many neurodegenerative and neuroinflammatory diseases. While being part of the NVU, astrocytes have been largely overlooked in this context and only recently, tightening of the glia limitans has been put forward as an important neuroprotective response to limit these injurious processes. In this study, using the retina as a central nervous system (CNS) model organ, we investigated the structure and function of the glia limitans, and reveal that the blood-retina barrier and glia limitans function as a coordinated double barrier to limit infiltration of leukocytes and immune molecules. We provide in vitro and in vivo evidence for a protective response at the NVU upon CNS injury, which evokes inflammation-induced glia limitans tightening. Matrix metalloproteinase-3 (MMP-3) was found to be a crucial regulator of this process, thereby revealing its beneficial and immunomodulatory role in the CNS. in vivo experiments in which MMP-3 activity was deleted via genetic and pharmacological approaches, combined with a comprehensive study of tight junction molecules, glial end feet markers, myeloid cell infiltration, cytokine expression and neurodegeneration, show that MMP-3 attenuates neuroinflammation and neurodegeneration by tightening the glia limitans, thereby pointing to a prominent role of MMP-3 in preserving the integrity of the NVU upon injury. Finally, we gathered promising evidence to suggest that IL1b, which is also regulated by MMP-3, is at least one of the molecular messengers that induces glia limitans tightening in the injured CNS.


Assuntos
Traumatismos do Nervo Óptico , Astrócitos , Humanos , Metaloproteinase 3 da Matriz , Neuroglia , Retina
11.
Hum Mutat ; 40(5): 539-551, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30668888

RESUMO

Sorsby fundus dystrophy (SFD) is a macular degeneration caused by mutations in TIMP3, the majority of which introduce a novel cysteine. However, the exact molecular mechanisms underlying SFD remain unknown. We aimed to provide novel insights into the functional consequences of a distinct N-terminal mutation. Haplotype reconstruction in three SFD families revealed that the identified c.113C>G, p.(Ser38Cys) mutation is a founder in Belgian and northern French families with a late-onset SFD phenotype. Functional consequences of the p.(Ser38Cys) mutation were investigated by high-resolution Western blot analysis of wild type and mutant TIMP3 using patient fibroblasts and in vitro generated proteins, and by molecular modeling of TIMP3 and its interaction partners. We could not confirm a previous hypothesis on dimerization of mutant TIMP3 proteins. However, we identified aberrant intramolecular disulfide bonding. Our data provide evidence for disruption of the established Cys36-Cys143 disulfide bond and formation of a novel Cys36-Cys38 bond, possibly associated with increased glycosylation of the protein. In conclusion, we propose a novel pathogenetic mechanism underlying the p.(Ser38Cys) TIMP3 founder mutation involving intramolecular disulfide bonding. These results provide new insights into the pathogenesis of SFD and other retinopathies linked to mutations in TIMP3, such as age-related macular degeneration.


Assuntos
Efeito Fundador , Degeneração Macular/diagnóstico , Degeneração Macular/genética , Mutação , Domínios e Motivos de Interação entre Proteínas , Inibidor Tecidual de Metaloproteinase-3/química , Inibidor Tecidual de Metaloproteinase-3/genética , Idoso , Dissulfetos , Feminino , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Haplótipos , Humanos , Masculino , Metaloproteinase 2 da Matriz/química , Metaloproteinase 2 da Matriz/genética , Metaloproteinase 2 da Matriz/metabolismo , Peso Molecular , Linhagem , Conformação Proteica , Relação Estrutura-Atividade , Inibidor Tecidual de Metaloproteinase-3/metabolismo
12.
Proc Natl Acad Sci U S A ; 113(20): 5670-5, 2016 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-27147605

RESUMO

Genetic polymorphisms in coding genes play an important role when using mouse inbred strains as research models. They have been shown to influence research results, explain phenotypical differences between inbred strains, and increase the amount of interesting gene variants present in the many available inbred lines. SPRET/Ei is an inbred strain derived from Mus spretus that has ∼1% sequence difference with the C57BL/6J reference genome. We obtained a listing of all SNPs and insertions/deletions (indels) present in SPRET/Ei from the Mouse Genomes Project (Wellcome Trust Sanger Institute) and processed these data to obtain an overview of all transcripts having nonsynonymous coding sequence variants. We identified 8,883 unique variants affecting 10,096 different transcripts from 6,328 protein-coding genes, which is about 28% of all coding genes. Because only a subset of these variants results in drastic changes in proteins, we focused on variations that are nonsense mutations that ultimately resulted in a gain of a stop codon. These genes were identified by in silico changing the C57BL/6J coding sequences to the SPRET/Ei sequences, converting them to amino acid (AA) sequences, and comparing the AA sequences. All variants and transcripts affected were also stored in a database, which can be browsed using a SPRET/Ei M. spretus variants web tool (www.spretus.org), including a manual. We validated the tool by demonstrating the loss of function of three proteins predicted to be severely truncated, namely Fas, IRAK2, and IFNγR1.


Assuntos
Códon sem Sentido , Camundongos Endogâmicos/genética , Polimorfismo de Nucleotídeo Único , Animais , Ontologia Genética , Quinases Associadas a Receptores de Interleucina-1/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Interferon/fisiologia , Receptor fas/fisiologia , Receptor de Interferon gama
13.
Gastroenterology ; 153(4): 1054-1067, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-28642198

RESUMO

BACKGROUND: Intestinal fibrosis resulting in (sub)obstruction is a common complication of Crohn's disease (CD). Rho kinases (ROCKs) play multiple roles in TGFß-induced myofibroblast activation that could be therapeutic targets. Because systemic ROCK inhibition causes cardiovascular side effects, we evaluated the effects of a locally acting ROCK inhibitor (AMA0825) on intestinal fibrosis. METHODS: Fibrosis was assessed in mouse models using dextran sulfate sodium (DSS) and adoptive T-cell transfer. The in vitro and ex vivo effects of AMA0825 were studied in different cell types and in CD biopsy cultures. RESULTS: ROCK is expressed in fibroblastic, epithelial, endothelial, and muscle cells of the human intestinal tract and is activated in inflamed and fibrotic tissue. Prophylactic treatment with AMA0825 inhibited myofibroblast accumulation, expression of pro-fibrotic factors, and accumulation of fibrotic tissue without affecting clinical disease activity and histologic inflammation in 2 models of fibrosis. ROCK inhibition reversed established fibrosis in a chronic DSS model and impeded ex vivo pro-fibrotic protein secretion from stenotic CD biopsies. AMA0825 reduced TGFß1-induced activation of myocardin-related transcription factor (MRTF) and p38 mitogen-activated protein kinase (MAPK), down-regulating matrix metalloproteinases, collagen, and IL6 secretion from fibroblasts. In these cells, ROCK inhibition potentiated autophagy, which was required for the observed reduction in collagen and IL6 production. AMA0825 did not affect pro-inflammatory cytokine secretion from other ROCK-positive cell types, corroborating the selective in vivo effect on fibrosis. CONCLUSIONS: Local ROCK inhibition prevents and reverses intestinal fibrosis by diminishing MRTF and p38 MAPK activation and increasing autophagy in fibroblasts. Overall, our results show that local ROCK inhibition is promising for counteracting fibrosis as an add-on therapy for CD.


Assuntos
Íleo/efeitos dos fármacos , Doenças Inflamatórias Intestinais/prevenção & controle , Obstrução Intestinal/prevenção & controle , Miofibroblastos/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Quinases Associadas a rho/antagonistas & inibidores , Transferência Adotiva , Animais , Autofagia/efeitos dos fármacos , Estudos de Casos e Controles , Colágeno/metabolismo , Sulfato de Dextrana , Modelos Animais de Doenças , Ativação Enzimática , Fibrose , Humanos , Íleo/enzimologia , Íleo/imunologia , Íleo/patologia , Doenças Inflamatórias Intestinais/induzido quimicamente , Doenças Inflamatórias Intestinais/enzimologia , Doenças Inflamatórias Intestinais/patologia , Interleucina-6/metabolismo , Obstrução Intestinal/induzido quimicamente , Obstrução Intestinal/enzimologia , Obstrução Intestinal/patologia , Masculino , Metaloproteinases da Matriz/metabolismo , Camundongos Endogâmicos C57BL , Miofibroblastos/enzimologia , Miofibroblastos/imunologia , Miofibroblastos/patologia , Transdução de Sinais/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/transplante , Fatores de Tempo , Técnicas de Cultura de Tecidos , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Quinases Associadas a rho/metabolismo
14.
Crit Care Med ; 46(1): e67-e75, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29095202

RESUMO

OBJECTIVES: Sepsis causes very high mortality and morbidity rates and remains one of the biggest medical challenges. This study investigates whether plasma levels of both matrix metalloproteinase 8 and tumor necrosis factor receptor 1 are associated with sepsis severity and also investigates the therapeutic applicability of simultaneous inhibition of the two molecules in sepsis. DESIGN: Observational human pilot study-prospective controlled animal study. SETTING: University hospital and research laboratory. SUBJECTS: Sepsis patients and C57BL/6 mice deficient for matrix metalloproteinase 8 and/or tumor necrosis factor receptor 1. INTERVENTION: Plasma and whole blood RNA were collected from 13 sepsis patients for 7 consecutive days and within 24 hours of admission to ICU. Matrix metalloproteinase 8 and tumor necrosis factor receptor 1 plasma and expression levels were determined in these patients. Mice deficient for both matrix metalloproteinase 8 and tumor necrosis factor receptor 1 were generated and subjected to endotoxemia and cecal ligation and puncture. Additionally, a bispecific Nanobody that simultaneously blocks matrix metalloproteinase 8 and tumor necrosis factor receptor 1 was created. MEASUREMENTS AND MAIN RESULTS: Plasma levels of matrix metalloproteinase 8 and tumor necrosis factor receptor 1 were positively correlated with the Sequential Organ Failure Assessment score (r, 0.51 and 0.58) and interleukin 6 levels (r, 0.59 and 0.52) in 13 sepsis patients. Combined elimination of tumor necrosis factor receptor 1 and matrix metalloproteinase 8 in double knockout mice resulted in superior survival in endotoxemia and CLP compared with single knockouts and wild-type mice. Cotreatment with our bispecific Nanobody in CLP resulted in improved survival rates (28% vs 19%) compared with untreated mice. CONCLUSIONS: Inhibition of matrix metalloproteinase 8 and tumor necrosis factor receptor 1 might have therapeutic potential to treat sepsis and proof-of-principle was provided as therapeutics that inhibit both tumor necrosis factor receptor 1 and matrix metalloproteinase 8 are effective in CLP.


Assuntos
Inflamação/fisiopatologia , Metaloproteinase 8 da Matriz/fisiologia , Inibidores de Metaloproteinases de Matriz/farmacologia , Receptores Tipo I de Fatores de Necrose Tumoral/antagonistas & inibidores , Sepse/fisiopatologia , Animais , Interleucina-6/sangue , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Projetos Piloto , Estudos Prospectivos , Receptores Tipo I de Fatores de Necrose Tumoral/fisiologia
15.
Mol Pharm ; 15(3): 1142-1149, 2018 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-29433310

RESUMO

Nucleic acid biopharmaceuticals are being investigated as potential therapeutics. They need to be incorporated into a biocompatible carrier so as to overcome several biological barriers. Rational development of suitable nanocarriers requires high-quality characterization techniques. While size, concentration, and stability can be very well measured these days, even in complex biological fluids, a method to accurately quantify the number of nucleic acid therapeutics encapsulated in nanocarriers is still missing. Here we present a method, based on concentration measurements with single particle tracking microscopy, with which it is possible to directly measure the number of plasmid DNA molecules per nanoparticle, referred to as the plasmid/NP ratio. Using DOTAP/DOPE liposomes as a model carrier, we demonstrate the usefulness of the method by investigating the influence of various experimental factors on the plasmid/NP ratio. We find that the plasmid/NP ratio is inversely proportional with the size of the pDNA and that the plasmid/NP decreases when lipoplexes are prepared at lower concentrations of pDNA and nanocarrier, with values ranging from 6.5 to 3 plasmid/NP. Furthermore, the effect of pre- and post-PEGylation of lipoplexes was examined, finding that pre-PEGylation results in a decreased plasmid/NP ratio, while post-PEGylation did not alter the plasmid/NP ratio. These proof-of-concept experiments show that single particle tracking offers an extension of the nanoparticle characterization toolbox and is expected to aid in the efficient development of nanoformulations for nucleic acid-based therapies.


Assuntos
Produtos Biológicos/administração & dosagem , Portadores de Fármacos/química , Ácidos Nucleicos/administração & dosagem , Ácidos Graxos Monoinsaturados/química , Lipossomos , Microscopia/métodos , Nanopartículas/química , Fosfatidiletanolaminas/química , Plasmídeos/genética , Compostos de Amônio Quaternário/química , Transfecção/métodos
16.
Int J Mol Sci ; 19(5)2018 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-29751683

RESUMO

The first Food and Drug Administration-(FDA)-approved drugs were small, chemically-manufactured and highly active molecules with possible off-target effects, followed by protein-based medicines such as antibodies. Conventional antibodies bind a specific protein and are becoming increasingly important in the therapeutic landscape. A very prominent class of biologicals are the anti-tumor necrosis factor (TNF) drugs that are applied in several inflammatory diseases that are characterized by dysregulated TNF levels. Marketing of TNF inhibitors revolutionized the treatment of diseases such as Crohn's disease. However, these inhibitors also have undesired effects, some of them directly associated with the inherent nature of this drug class, whereas others are linked with their mechanism of action, being pan-TNF inhibition. The effects of TNF can diverge at the level of TNF format or receptor, and we discuss the consequences of this in sepsis, autoimmunity and neurodegeneration. Recently, researchers tried to design drugs with reduced side effects. These include molecules with more specificity targeting one specific TNF format or receptor, or that neutralize TNF in specific cells. Alternatively, TNF-directed biologicals without the typical antibody structure are manufactured. Here, we review the complications related to the use of conventional TNF inhibitors, together with the anti-TNF alternatives and the benefits of selective approaches in different diseases.


Assuntos
Receptores do Fator de Necrose Tumoral/antagonistas & inibidores , Inibidores do Fator de Necrose Tumoral , Animais , Anticorpos Monoclonais/farmacologia , Anticorpos Monoclonais/uso terapêutico , Suscetibilidade a Doenças , Humanos , Imunomodulação , Mediadores da Inflamação/metabolismo , Ligação Proteica , Receptores do Fator de Necrose Tumoral/metabolismo , Transdução de Sinais , Fatores de Necrose Tumoral/genética , Fatores de Necrose Tumoral/metabolismo , Fatores de Necrose Tumoral/farmacologia
17.
J Immunol ; 194(11): 5094-102, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25911755

RESUMO

Psoriasis is a chronic inflammatory skin disease affecting 2-3% of the world population and is mainly characterized by epidermal hyperplasia, scaling, and erythema. A prominent role for TNF in the pathogenesis of psoriasis has been shown, and consequently various types of TNF antagonists such as etanercept and infliximab have been used successfully. Recently, increasing amounts of data suggest that type I IFNs are also crucial mediators of psoriasis. To investigate whether blocking their respective receptors would be useful, TNFR1- and IFNAR1-deficient mice were challenged with Aldara, which contains imiquimod, and is used as an experimental model to induce psoriasis-like skin lesions in mice. Both transgenic mice showed partial protection toward Aldara-induced inflammation compared with control groups. Additionally, TNFR1 knockout mice showed sustained type I IFN production in response to Aldara. Double knockout mice lacking both receptors showed superior protection to Aldara in comparison with the single knockout mice and displayed reduced levels of IL-12p40, IL-17F, and S100A8, indicating that the TNF and type I IFN pathways contribute significantly to inflammation upon treatment with Aldara. Our findings reveal that dual inhibition of TNFR1 and IFNAR1 may represent a potential novel strategic treatment of psoriasis.


Assuntos
Interferon Tipo I/metabolismo , Psoríase/imunologia , Receptor de Interferon alfa e beta/genética , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Fator de Necrose Tumoral alfa/metabolismo , Aminoquinolinas/farmacologia , Animais , Anticorpos Monoclonais/uso terapêutico , Calgranulina A/metabolismo , Etanercepte , Imiquimode , Imunoglobulina G/uso terapêutico , Inflamação/induzido quimicamente , Inflamação/tratamento farmacológico , Inflamação/imunologia , Infliximab , Interferon Tipo I/biossíntese , Subunidade p40 da Interleucina-12/metabolismo , Interleucina-17/metabolismo , Subunidade p19 da Interleucina-23/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Psoríase/induzido quimicamente , Receptor de Interferon alfa e beta/metabolismo , Receptores do Fator de Necrose Tumoral/uso terapêutico , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Pele/imunologia , Pele/patologia
18.
Mol Ther ; 24(5): 890-902, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26775809

RESUMO

A detrimental role for matrix metalloproteinase 8 (MMP8) has been identified in several pathological conditions, e.g., lethal hepatitis and the systemic inflammatory response syndrome. Since matrix MMP8-deficient mice are protected in the above-mentioned diseases, specific MMP8 inhibitors could be of clinical value. However, targeting a specific matrix metalloproteinase remains challenging due to the strong structural homology of matrix metalloproteinases, which form a family of 25 members in mammals. Single-domain antibodies, called nanobodies, offer a range of possibilities toward therapy since they are easy to generate, express, produce, and modify, e.g., by linkage to nanobodies directed against other target molecules. Hence, we generated small MMP8-binding nanobodies, and established a proof-of-principle for developing nanobodies that inhibit matrix metalloproteinase activity. Also, we demonstrated for the first time the possibility of expressing nanobodies systemically by in vivo electroporation of the muscle and its relevance as a potential therapy in inflammatory diseases.


Assuntos
Inflamação/tratamento farmacológico , Metaloproteinase 8 da Matriz/metabolismo , Inibidores de Metaloproteinases de Matriz/administração & dosagem , Anticorpos de Domínio Único/administração & dosagem , Animais , Modelos Animais de Doenças , Eletroporação , Inflamação/induzido quimicamente , Inibidores de Metaloproteinases de Matriz/química , Inibidores de Metaloproteinases de Matriz/uso terapêutico , Camundongos , Camundongos Knockout , Simulação de Acoplamento Molecular , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/uso terapêutico
19.
J Neurosci ; 35(37): 12766-78, 2015 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-26377465

RESUMO

The blood-CSF barrier (BCSFB) consists of a monolayer of choroid plexus epithelial (CPE) cells that maintain CNS homeostasis by producing CSF and restricting the passage of undesirable molecules and pathogens into the brain. Alzheimer's disease is the most common progressive neurodegenerative disorder and is characterized by the presence of amyloid ß (Aß) plaques and neurofibrillary tangles in the brain. Recent research shows that Alzheimer's disease is associated with morphological changes in CPE cells and compromised production of CSF. Here, we studied the direct effects of Aß on the functionality of the BCSFB. Intracerebroventricular injection of Aß1-42 oligomers into the cerebral ventricles of mice, a validated Alzheimer's disease model, caused induction of a cascade of detrimental events, including increased inflammatory gene expression in CPE cells and increased levels of proinflammatory cytokines and chemokines in the CSF. It also rapidly affected CPE cell morphology and tight junction protein levels. These changes were associated with loss of BCSFB integrity, as shown by an increase in BCSFB leakage. Aß1-42 oligomers also increased matrix metalloproteinase (MMP) gene expression in the CPE and its activity in CSF. Interestingly, BCSFB disruption induced by Aß1-42 oligomers did not occur in the presence of a broad-spectrum MMP inhibitor or in MMP3-deficient mice. These data provide evidence that MMPs are essential for the BCSFB leakage induced by Aß1-42 oligomers. Our results reveal that Alzheimer's disease-associated soluble Aß1-42 oligomers induce BCSFB dysfunction and suggest MMPs as a possible therapeutic target. SIGNIFICANCE STATEMENT: No treatments are yet available to cure Alzheimer's disease; however, soluble Aß oligomers are believed to play a crucial role in the neuroinflammation that is observed in this disease. Here, we studied the effect of Aß oligomers on the often neglected barrier between blood and brain, called the blood-CSF barrier (BCSFB). This BCSFB is formed by the choroid plexus epithelial cells and is important in maintaining brain homeostasis. We observed Aß oligomer-induced changes in morphology and loss of BCSFB integrity that might play a role in Alzheimer's disease progression. Strikingly, both inhibition of matrix metalloproteinase (MMP) activity and MMP3 deficiency could protect against the detrimental effects of Aß oligomer. Clearly, our results suggest that MMP inhibition might have therapeutic potential.


Assuntos
Peptídeos beta-Amiloides/farmacologia , Barreira Hematoencefálica/efeitos dos fármacos , Metaloproteinases da Matriz/fisiologia , Fragmentos de Peptídeos/farmacologia , Peptídeos beta-Amiloides/administração & dosagem , Peptídeos beta-Amiloides/química , Animais , Biopolímeros , Barreira Hematoencefálica/enzimologia , Permeabilidade Capilar/efeitos dos fármacos , Forma Celular , Quimiocinas/líquido cefalorraquidiano , Plexo Corióideo/citologia , Citocinas/líquido cefalorraquidiano , Ativação Enzimática/efeitos dos fármacos , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Células Epiteliais/ultraestrutura , Feminino , Injeções Intraventriculares , Metaloproteinase 3 da Matriz/deficiência , Metaloproteinase 3 da Matriz/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fármacos Neuroprotetores/farmacologia , Fragmentos de Peptídeos/administração & dosagem , Fragmentos de Peptídeos/química , Inibidores de Proteases/farmacologia , Organismos Livres de Patógenos Específicos , Junções Íntimas/efeitos dos fármacos , Junções Íntimas/fisiologia
20.
J Biol Chem ; 290(7): 4022-37, 2015 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-25538244

RESUMO

The cytokine TNF is a well known drug target for several inflammatory diseases such as Crohn disease. Despite the great success of TNF blockers, therapy could be improved because of high costs and side effects. Selective inhibition of TNF receptor (TNFR) 1 signaling holds the potential to greatly reduce the pro-inflammatory activity of TNF, thereby preserving the advantageous immunomodulatory signals mediated by TNFR2. We generated a selective human TNFR1 inhibitor based on Nanobody (Nb) technology. Two anti-human TNFR1 Nbs were linked with an anti-albumin Nb to generate Nb Alb-70-96 named "TNF Receptor-One Silencer" (TROS). TROS selectively binds and inhibits TNF/TNFR1 and lymphotoxin-α/TNFR1 signaling with good affinity and IC50 values, both of which are in the nanomolar range. Surface plasmon resonance analysis reveals that TROS competes with TNF for binding to human TNFR1. In HEK293T cells, TROS strongly reduces TNF-induced gene expression, like IL8 and TNF, in a dose-dependent manner; and in ex vivo cultured colon biopsies of CD patients, TROS inhibits inflammation. Finally, in liver chimeric humanized mice, TROS antagonizes inflammation in a model of acute TNF-induced liver inflammation, reflected in reduced human IL8 expression in liver and reduced IL6 levels in serum. These results demonstrate the considerable potential of TROS and justify the evaluation of TROS in relevant disease animal models of both acute and chronic inflammation and eventually in patients.


Assuntos
Colo/efeitos dos fármacos , Doença de Crohn/prevenção & controle , Inflamação/prevenção & controle , Fígado/efeitos dos fármacos , Receptores Tipo I de Fatores de Necrose Tumoral/antagonistas & inibidores , Receptores Tipo I de Fatores de Necrose Tumoral/imunologia , Anticorpos de Domínio Único/farmacologia , Sequência de Aminoácidos , Animais , Colo/imunologia , Colo/patologia , Doença de Crohn/imunologia , Doença de Crohn/patologia , Citocinas/metabolismo , Ensaio de Imunoadsorção Enzimática , Mapeamento de Epitopos , Feminino , Humanos , Inflamação/imunologia , Inflamação/patologia , Fígado/imunologia , Fígado/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos SCID , Dados de Sequência Molecular , Conformação Proteica , Receptores Tipo I de Fatores de Necrose Tumoral/metabolismo , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Anticorpos de Domínio Único/química , Anticorpos de Domínio Único/imunologia , Ressonância de Plasmônio de Superfície , Fator de Necrose Tumoral alfa/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA