Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Environ Microbiol ; 22(6): 2165-2181, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32154616

RESUMO

Pseudomonas virus vB_PaeM_PA5oct is proposed as a model jumbo bacteriophage to investigate phage-bacteria interactions and is a candidate for phage therapy applications. Combining hybrid sequencing, RNA-Seq and mass spectrometry allowed us to accurately annotate its 286,783 bp genome with 461 coding regions including four non-coding RNAs (ncRNAs) and 93 virion-associated proteins. PA5oct relies on the host RNA polymerase for the infection cycle and RNA-Seq revealed a gradual take-over of the total cell transcriptome from 21% in early infection to 93% in late infection. PA5oct is not organized into strictly contiguous regions of temporal transcription, but some genomic regions transcribed in early, middle and late phases of infection can be discriminated. Interestingly, we observe regions showing limited transcription activity throughout the infection cycle. We show that PA5oct upregulates specific bacterial operons during infection including operons pncA-pncB1-nadE involved in NAD biosynthesis, psl for exopolysaccharide biosynthesis and nap for periplasmic nitrate reductase production. We also observe a downregulation of T4P gene products suggesting mechanisms of superinfection exclusion. We used the proteome of PA5oct to position our isolate amongst other phages using a gene-sharing network. This integrative omics study illustrates the molecular diversity of jumbo viruses and raises new questions towards cellular regulation and phage-encoded hijacking mechanisms.


Assuntos
Fagos de Pseudomonas/genética , Genoma , Proteoma , Pseudomonas aeruginosa/virologia
2.
Appl Microbiol Biotechnol ; 101(3): 1203-1216, 2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27770178

RESUMO

Burkholderia phage AP3 (vB_BceM_AP3) is a temperate virus of the Myoviridae and the Peduovirinae subfamily (P2likevirus genus). This phage specifically infects multidrug-resistant clinical Burkholderia cenocepacia lineage IIIA strains commonly isolated from cystic fibrosis patients. AP3 exhibits high pairwise nucleotide identity (61.7 %) to Burkholderia phage KS5, specific to the same B. cenocepacia host, and has 46.7-49.5 % identity to phages infecting other species of Burkholderia. The lysis cassette of these related phages has a similar organization (putative antiholin, putative holin, endolysin, and spanins) and shows 29-98 % homology between specific lysis genes, in contrast to Enterobacteria phage P2, the hallmark phage of this genus. The AP3 and KS5 lysis genes have conserved locations and high amino acid sequence similarity. The AP3 bacteriophage particles remain infective up to 5 h at pH 4-10 and are stable at 60 °C for 30 min, but are sensitive to chloroform, with no remaining infective particles after 24 h of treatment. AP3 lysogeny can occur by stable genomic integration and by pseudo-lysogeny. The lysogenic bacterial mutants did not exhibit any significant changes in virulence compared to wild-type host strain when tested in the Galleria mellonella moth wax model. Moreover, AP3 treatment of larvae infected with B. cenocepacia revealed a significant increase (P < 0.0001) in larvae survival in comparison to AP3-untreated infected larvae. AP3 showed robust lytic activity, as evidenced by its broad host range, the absence of increased virulence in lysogenic isolates, the lack of bacterial gene disruption conditioned by bacterial tRNA downstream integration site, and the absence of detected toxin sequences. These data suggest that the AP3 phage is a promising potent agent against bacteria belonging to the most common B. cenocepacia IIIA lineage strains.


Assuntos
Anti-Infecciosos/isolamento & purificação , Bacteriófagos/genética , Bacteriófagos/isolamento & purificação , Bacteriófagos/fisiologia , Complexo Burkholderia cepacia/virologia , Burkholderia/virologia , Genoma Viral , Especificidade de Hospedeiro , Animais , Infecções por Burkholderia/microbiologia , Burkholderia cenocepacia/virologia , Fibrose Cística/microbiologia , Humanos , Lisogenia , Mariposas/virologia , Análise de Sequência de DNA , Virulência
3.
Appl Environ Microbiol ; 81(10): 3336-48, 2015 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-25746992

RESUMO

Phage therapy is a promising option for fighting against staphylococcal infections. Two lytic phages, vB_SauM_phiIPLA-RODI (phiIPLA-RODI) and vB_SepM_phiIPLA-C1C (phiIPLA-C1C), belonging to the Myoviridae family and exhibiting wide host ranges, were characterized in this study. The complete genome sequences comprised 142,348 bp and 140,961 bp and contained 213 and 203 open reading frames, respectively. The gene organization was typical of Spounavirinae members, with long direct terminal repeats (LTRs), genes grouped into modules not clearly separated from each other, and several group I introns. In addition, four genes encoding tRNAs were identified in phiIPLA-RODI. Comparative DNA sequence analysis showed high similarities with two phages, GH15 and 676Z, belonging to the Twort-like virus genus (nucleotide identities of >84%); for phiIPLA-C1C, a high similarity with phage phiIBB-SEP1 was observed (identity of 80%). Challenge assays of phages phiIPLA-RODI and phiIPLA-C1C against planktonic staphylococcal cells confirmed their lytic ability, as they were able to remove 5 log units in 8 h. Exposure of biofilms to phages phiIPLA-RODI and phiIPLA-C1C reduced the amount of adhered bacteria to about 2 log units in both monospecies and dual-species biofilms, but phiIPLA-RODI turned out to be as effective as the mixture of both phages. Moreover, the frequencies of bacteriophage-insensitive mutants (BIMs) of Staphylococcus aureus and S. epidermidis with resistance to phiIPLA-RODI and phiIPLA-C1C were low, at 4.05 × 10(-7) ± 2.34 × 10(-9) and 1.1 × 10(-7) ± 2.08 × 10(-9), respectively. Overall, a generally reduced fitness in the absence of phages was observed for BIMs, which showed a restored phage-sensitive phenotype in a few generations. These results confirm that lytic bacteriophages can be efficient biofilm-disrupting agents, supporting their potential as antimicrobials against staphylococcal infections.


Assuntos
Bacteriófagos/fisiologia , Biofilmes , Myoviridae/fisiologia , Staphylococcus/virologia , Bacteriófagos/classificação , Bacteriófagos/genética , Bacteriófagos/isolamento & purificação , Genoma Viral , Especificidade de Hospedeiro , Dados de Sequência Molecular , Myoviridae/classificação , Myoviridae/genética , Myoviridae/isolamento & purificação , Esgotos/virologia , Staphylococcus/fisiologia
4.
Viruses ; 15(5)2023 05 22.
Artigo em Inglês | MEDLINE | ID: mdl-37243298

RESUMO

The Belgian Society for Viruses of Microbes (BSVoM) was founded on 9 June 2022 to capture and enhance the collaborative spirit among the expanding community of microbial virus researchers in Belgium. The sixteen founders are affiliated to fourteen different research entities across academia, industry and government. Its inaugural symposium was held on 23 September 2022 in the Thermotechnical Institute at KU Leuven. The meeting program covered three thematic sessions launched by international keynote speakers: (1) virus-host interactions, (2) viral ecology, evolution and diversity and (3) present and future applications. During the one-day symposium, four invited keynote lectures, ten selected talks and eight student pitches were given along with 41 presented posters. The meeting hosted 155 participants from twelve countries.


Assuntos
Interações entre Hospedeiro e Microrganismos , Vírus , Humanos , Bélgica
5.
Front Med (Lausanne) ; 8: 732047, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34540873

RESUMO

During the current COVID-19 pandemic, the use of face masks has become increasingly recommended and even mandatory in community settings. To evaluate the risk of bacterial cross-contamination, this study analyzed the bacterial bioburden of disposable surgical masks and homemade cotton masks, and surveyed the habits and face mask preferences of the Flemish population. Using culture approaches and 16S rRNA gene amplicon sequencing, we analyzed the microbial community on surgical and/or cotton face masks of 13 healthy volunteers after 4 h of wearing. Cotton and surgical masks contained on average 1.46 × 105 CFU/mask and 1.32 × 104 CFU/mask, respectively. Bacillus, Staphylococcus, and Acinetobacter spp. were mostly cultured from the masks and 43% of these isolates were resistant to ampicillin or erythromycin. Microbial profiling demonstrated a consistent difference between mask types. Cotton masks mainly contained Roseomonas, Paracoccus, and Enhydrobacter taxa and surgical masks Streptococcus and Staphylococcus. After 4 h of mask wearing, the microbiome of the anterior nares and the cheek showed a trend toward an altered beta-diversity. According to dedicated questions in the large-scale Corona survey of the University of Antwerp with almost 25,000 participants, only 21% of responders reported to clean their cotton face mask daily. Laboratory results indicated that the best mask cleaning methods were boiling at 100°C, washing at 60°C with detergent or ironing with a steam iron. Taken together, this study suggests that a considerable number of bacteria, including pathobionts and antibiotic resistant bacteria, accumulate on surgical and even more on cotton face masks after use. Based on our results, face masks should be properly disposed of or sterilized after intensive use. Clear guidelines for the general population are crucial to reduce the bacteria-related biosafety risk of face masks, and measures such as physical distancing and increased ventilation should not be neglected when promoting face mask use.

6.
Front Microbiol ; 11: 1619, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32760378

RESUMO

A fast-growing field of research focuses on microbial biocontrol in the phyllosphere. Phyllosphere microorganisms possess a wide range of adaptation and biocontrol factors, which allow them to adapt to the phyllosphere environment and inhibit the growth of microbial pathogens, thus sustaining plant health. These biocontrol factors can be categorized in direct, microbe-microbe, and indirect, host-microbe, interactions. This review gives an overview of the modes of action of microbial adaptation and biocontrol in the phyllosphere, the genetic basis of the mechanisms, and examples of experiments that can detect these mechanisms in laboratory and field experiments. Detailed insights in such mechanisms are key for the rational design of novel microbial biocontrol strategies and increase crop protection and production. Such novel biocontrol strategies are much needed, as ensuring sufficient and consistent food production for a growing world population, while protecting our environment, is one of the biggest challenges of our time.

7.
Front Microbiol ; 11: 1400, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32714306

RESUMO

The opportunities in the fields of probiotics and prebiotics to a great degree stem from what we can learn about how they influence the microbiota and interact with the host. We discuss recent insights, cutting-edge technologies and controversial results from the perspective of early career researchers innovating in these areas. This perspective emerged from the 2019 meeting of the International Scientific Association for Probiotics and Prebiotics - Student and Fellows Association (ISAPP-SFA). Probiotic and prebiotic research is being driven by genetic characterization and modification of strains, state-of-the-art in vitro, in vivo, and in silico techniques designed to uncover the effects of probiotics and prebiotics on their targets, and metabolomic tools to identify key molecules that mediate benefits on the host. These research tools offer unprecedented insights into the functionality of probiotics and prebiotics in the host ecosystem. Young scientists need to acquire these diverse toolsets, or form inter-connected teams to perform comprehensive experiments and systematic analysis of data. This will be critical to identify microbial structure and co-dependencies at body sites and determine how administered probiotic strains and prebiotic substances influence the host. This and other strategies proposed in this review will pave the way for translating the health benefits observed during research into real-life outcomes. Probiotic strains and prebiotic products can contribute greatly to the amelioration of global issues threatening society. The intent of this article is to provide an early career researcher's perspective on where the biggest opportunities lie to advance science and impact human health.

8.
Viruses ; 12(12)2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33321823

RESUMO

Non-typhoidal Salmonella present a major threat to animal and human health as food-borne infectious agents. We characterized 91 bacterial isolates from Armenia and Georgia in detail, using a suite of assays including conventional microbiological methods, determining antimicrobial susceptibility profiles, matrix assisted laser desorption/ionization-time of flight (MALDI-TOF) mass spectrometry, serotyping (using the White-Kauffmann-Le Minor scheme) and genotyping (repetitive element sequence-based PCR (rep-PCR)). No less than 61.5% of the isolates were shown to be multidrug-resistant. A new antimicrobial treatment strategy is urgently needed. Phage therapy, the therapeutic use of (bacterio-) phages, the bacterial viruses, to treat bacterial infections, is increasingly put forward as an additional tool for combatting antibiotic resistant infections. Therefore, we used this representative set of well-characterized Salmonella isolates to analyze the therapeutic potential of eleven single phages and selected phage cocktails from the bacteriophage collection of the Eliava Institute (Georgia). All isolates were shown to be susceptible to at least one of the tested phage clones or their combinations. In addition, genome sequencing of these phages revealed them as members of existing phage genera (Felixounavirus, Seunavirus, Viunavirus and Tequintavirus) and did not show genome-based counter indications towards their applicability against non-typhoidal Salmonella in a phage therapy or in an agro-food setting.


Assuntos
Bacteriófagos/fisiologia , Interações Hospedeiro-Patógeno , Infecções por Salmonella/epidemiologia , Infecções por Salmonella/microbiologia , Salmonella/virologia , Animais , Antibacterianos/farmacologia , Bacteriófagos/ultraestrutura , Doenças Transmitidas por Alimentos/microbiologia , Geografia Médica , República da Geórgia/epidemiologia , Humanos , Filogenia , Salmonella/classificação , Salmonella/efeitos dos fármacos , Salmonella/isolamento & purificação , Infecções por Salmonella/transmissão
9.
Cell Rep ; 31(8): 107674, 2020 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-32460009

RESUMO

Although an increasing number of beneficial microbiome members are characterized for the human gut and vagina, beneficial microbes are underexplored for the human upper respiratory tract (URT). In this study, we demonstrate that taxa from the beneficial Lactobacillus genus complex are more prevalent in the healthy URT than in patients with chronic rhinosinusitis (CRS). Several URT-specific isolates are cultured, characterized, and further explored for their genetic and functional properties related to adaptation to the URT. Catalase genes are found in the identified lactobacilli, which is a unique feature within this mostly facultative anaerobic genus. Moreover, one of our isolated strains, Lactobacillus casei AMBR2, contains fimbriae that enable strong adherence to URT epithelium, inhibit the growth and virulence of several URT pathogens, and successfully colonize nasal epithelium of healthy volunteers. This study thus demonstrates that specific lactobacilli are adapted to the URT and could have a beneficial keystone function in this habitat.


Assuntos
Lactobacillus/patogenicidade , Nariz/microbiologia , Feminino , Humanos , Masculino
10.
Environ Pollut ; 244: 118-126, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30326385

RESUMO

Bacterial endotoxins are a component of particulate matter (PM) with anticipated health implications, yet we know little about how host reception of endotoxin through toll-like receptor 4 (TLR4) is affected by its association with other PM components. Subsequently, we investigated the relationship between endotoxin concentration (recombinant Factor C (rFC) assay) and host recognition (HEK Blue-TLR4 NF-kB reporter cell line based assay) in various compositions of urban PM, including road traffic, industrial and urban green land use classes. While the assays did not correlate strongly between each other, the TLR4 reporter cell line was found to be better correlated to the IL-8 response of PM. Furthermore, the ability of the quantified endotoxin (rFC assay) to stimulate the TLR4/MD-2 complex was significantly affected by the urban land use class, where traffic locations were found to be significantly higher in bioactive endotoxin than the industrial and green locations. We subsequently turned our attention to PM composition and characterized the samples based on transition metal content (through ICP-MS). The effect of nickel and cobalt - previously reported to activate the hTLR4/MD-2 complex - was found to be negligible in comparison to that of iron. Here, the addition of iron as a factor significantly improved the regression model between the two endotoxin assays, explaining 77% of the variation of the TLR4 stimulation and excluding the significant effect of land use class. Moreover, the effect of iron proved to be more than a correlation, since dosing LPS with Fe2+ led to an increase up to 64% in TLR4 stimulation, while Fe2+ without LPS was unable to stimulate a response. This study shows that endotoxin quantification assays (such as the rFC assay) may not always correspond to human biological recognition of endotoxin in urban PM, while its toxicity can be synergistically influenced by the associated PM composition.


Assuntos
Bioensaio/estatística & dados numéricos , Endotoxinas/análise , Endotoxinas/toxicidade , Material Particulado/toxicidade , Linhagem Celular , Humanos , Interleucina-8/metabolismo , Metais/farmacologia , Receptor 4 Toll-Like/efeitos dos fármacos , Elementos de Transição/farmacologia
11.
Bioresour Technol ; 275: 247-257, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30594834

RESUMO

Microalgal biomass production is a resource-efficient answer to the exponentially increasing demand for protein, yet variability in biomass quality is largely unexplored. Nutritional value and safety were determined for Chlorella and Spirulina biomass from different producers, production batches and the same production batch. Chlorella presented a similar protein content (47 ±â€¯8%) compared to Spirulina (48 ±â€¯4%). However, protein quality, expressed as essential amino acid index, and digestibility were lower for Chlorella (1.1 ±â€¯0.1 and 51 ±â€¯9%, respectively) compared to Spirulina (1.3 ±â€¯0.1 and 61 ±â€¯4%, respectively). Generally, variability was lower between batches and within a batch. Heavy metals, pesticides, mycotoxins, antibiotics and nitrate did not violate regulatory limits, while polycyclic aromatic hydrocarbon levels exceeded the norm for some samples, indicating the need for continuous monitoring. This first systematic screening of commercial microalgal biomass revealed a high nutritional variability, necessitating further optimization of cultivation and post-processing conditions. Based on price and quality, Spirulina was preferred above Chlorella.


Assuntos
Chlorella/metabolismo , Spirulina/metabolismo , Biomassa , Microalgas/metabolismo , Valor Nutritivo
12.
Sci Rep ; 9(1): 2900, 2019 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-30814593

RESUMO

Lactobacilli have been evaluated as probiotics against Candida infections in several clinical trials, but with variable results. Predicting and understanding the clinical efficacy of Lactobacillus strains is hampered by an overall lack of insights into their modes of action. In this study, we aimed to unravel molecular mechanisms underlying the inhibitory effects of lactobacilli on hyphal morphogenesis, which is a crucial step in C. albicans virulence. Based on a screening of different Lactobacillus strains, we found that the closely related taxa L. rhamnosus, L. casei and L. paracasei showed stronger activity against Candida hyphae formation compared to other Lactobacillus species tested. By exploring the activity of purified compounds and mutants of the model strain L. rhamnosus GG, the major peptidoglycan hydrolase Msp1, conserved in the three closely related taxa, was identified as a key effector molecule. We could show that this activity of Msp1 was due to its ability to break down chitin, the main polymer in the hyphal cell wall of C. albicans. This identification of a Lactobacillus-specific protein with chitinase activity having anti-hyphal activity will assist in better strain selection and improved application in future clinical trials for Lactobacillus-based Candida-management strategies.


Assuntos
Proteínas de Bactérias/metabolismo , Candida albicans/fisiologia , Candidíase/terapia , Quitinases/metabolismo , Hifas/fisiologia , Lacticaseibacillus rhamnosus/fisiologia , Probióticos/uso terapêutico , Terapia Biológica , Candida albicans/patogenicidade , Quitina/metabolismo , Humanos , Morfogênese , Interferência de RNA , RNA Ribossômico 16S/genética , Especificidade da Espécie , Virulência
13.
Microb Biotechnol ; 12(5): 849-855, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31225698

RESUMO

The preservation of the viability of microorganisms in probiotic formulations is the most important parameter ensuring the adequate concentration of live microorganisms at the time of administration. The formulation and processing techniques used to produce these probiotic formulations can influence the preservation of the microbial viability. However, it is also required that the bacteria maintain their key probiotic capacities during processing, formulation and shelf life. In this study, we investigated the impact of spray-drying on different cell wall properties of the model probiotic strain Lactobacillus rhamnosus GG, including its adherence to intestinal epithelial cells. The dltD gene knock-out mutant, L. rhamnosus GG CMPG5540, displaying modified cell wall lipoteichoic acids, showed significantly increased colony-forming units after spray-drying and subsequent storage under standard conditions compared to wild-type L. rhamnosus GG. In contrast, disruption of the biosynthesis of exopolysaccharides or pili expression did not impact survival. However, spray-drying did significantly affect the adherence capacity of L. rhamnosus GG. Scanning electron microscopy confirmed that the pili, key surface factors for adherence to intestinal cells and mucus, were sheared off during the spray-drying process. These data thus highlight that both the functionality and viability of probiotics should be assessed during the spray-drying process and subsequent storage.


Assuntos
Desidratação , Dessecação/métodos , Lacticaseibacillus rhamnosus/fisiologia , Viabilidade Microbiana , Preservação Biológica/métodos , Aderência Bacteriana , Contagem de Colônia Microbiana , Células Epiteliais/microbiologia , Probióticos
14.
Methods Mol Biol ; 1681: 59-69, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29134587

RESUMO

In bacteriophage research and therapy, most applications ask for highly purified phage suspensions. The standard technique for this is ultracentrifugation using cesium chloride gradients. This technique is cumbersome, elaborate and expensive. Moreover, it is unsuitable for the purification of large quantities of phage suspensions.The protocol described here, uses anion-exchange chromatography to bind phages to a stationary phase. This is done using an FLPC system, combined with Convective Interaction Media (CIM®) monoliths. Afterward, the column is washed to remove impurities from the CIM® disk. By using a buffer solution with a high ionic strength, the phages are subsequently eluted from the column and collected. In this way phages can be efficiently purified and concentrated.This protocol can be used to determine the optimal buffers, stationary phase chemistry and elution conditions, as well as the maximal capacity and recovery of the columns.


Assuntos
Bacteriófagos/isolamento & purificação , Cromatografia por Troca Iônica/métodos , Ânions , Etanolaminas/química
15.
Int J Pharm ; 534(1-2): 35-41, 2017 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-28986319

RESUMO

Increasing knowledge about the human microbiome has led to a growing awareness of the potential of applying probiotics to improve our health. The pharmaceutical industry shows an emerging interest in pharmaceutical formulations containing these beneficial microbes, the so-called pharmabiotics. An important manufacturing step is the drying of the probiotics, as this can increase the stability and shelf life of the finished pharmabiotic product. Unfortunately, drying also puts stress on microbial cells, thus causing a decrease in viability. We aimed to examine the effect of different drying media and protective excipients on the viability of the prototype probiotic strain Lactobacillus rhamnosus GG after spray drying and during subsequent storage for 28 weeks. The presence of phosphates in the drying medium showed to have a superior protective effect, especially during long-term storage at room temperature. Addition of lactose or trehalose resulted in significantly improved survival rates after drying as well as during long-term storage for the tested excipients. Both disaccharides are characterized by a high glass transition temperature. Maltodextrin showed less protective capacities compared to lactose and trehalose in all tested conditions. The usage of mannitol or dextran resulted in sticky powders and low yields, so further testing was not possible. In addition to optimizing the viability, future research will also explore the functionality of cellular probiotic components after spray drying in order to safeguard the probiotic activity of the formulated pharmabiotics.


Assuntos
Lacticaseibacillus rhamnosus/química , Viabilidade Microbiana/efeitos dos fármacos , Contagem de Colônia Microbiana/métodos , Dessecação/métodos , Armazenamento de Medicamentos/métodos , Excipientes/química , Liofilização/métodos , Temperatura Alta , Humanos , Lactose/química , Microbiota/fisiologia , Pós/química , Probióticos/química , Substâncias Protetoras/química , Taxa de Sobrevida , Temperatura de Transição , Trealose/química
16.
Front Microbiol ; 8: 2372, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29238339

RESUMO

To improve our understanding of upper respiratory tract (URT) diseases and the underlying microbial pathogenesis, a better characterization of the healthy URT microbiome is crucial. In this first large-scale study, we obtained more insight in the URT microbiome of healthy adults. Hereto, we collected paired nasal and nasopharyngeal swabs from 100 healthy participants in a citizen-science project. High-throughput 16S rRNA gene V4 amplicon sequencing was performed and samples were processed using the Divisive Amplicon Denoising Algorithm 2 (DADA2) algorithm. This allowed us to identify the bacterial richness and diversity of the samples in terms of amplicon sequence variants (ASVs), with special attention to intragenus variation. We found both niches to have a low overall species richness and uneven distribution. Moreover, based on hierarchical clustering, nasopharyngeal samples could be grouped into some bacterial community types at genus level, of which four were supported to some extent by prediction strength evaluation: one intermixed type with a higher bacterial diversity where Staphylococcus, Corynebacterium, and Dolosigranulum appeared main bacterial members in different relative abundances, and three types dominated by either Moraxella, Streptococcus, or Fusobacterium. Some of these bacterial community types such as Streptococcus and Fusobacterium were nasopharynx-specific and never occurred in the nose. No clear association between the nasopharyngeal bacterial profiles at genus level and the variables age, gender, blood type, season of sampling, or common respiratory allergies was found in this study population, except for smoking showing a positive association with Corynebacterium and Staphylococcus. Based on the fine-scale resolution of the ASVs, both known commensal and potential pathogenic bacteria were found within several genera - particularly in Streptococcus and Moraxella - in our healthy study population. Of interest, the nasopharynx hosted more potential pathogenic species than the nose. To our knowledge, this is the first large-scale study using the DADA2 algorithm to investigate the microbiota in the "healthy" adult nose and nasopharynx. These results contribute to a better understanding of the composition and diversity of the healthy microbiome in the URT and the differences between these important URT niches. Trial Registration: Ethical Committee of Antwerp University Hospital, B300201524257, registered 23 March 2015, ClinicalTrials.gov Identifier: NCT02 933983.

17.
Microb Biotechnol ; 10(6): 1753-1763, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28772020

RESUMO

A number of clinical studies have shown protective effects of lactobacilli against Candida species in the gastrointestinal tract, the urogenital tract and the oral cavity, while others did not show clear effects. Evidence on the mode of action of lactobacilli against Candida is also still lacking. In this study, the anti-Candida activity of the model probiotic strain Lactobacillus rhamnosus GG was explored in different assays to determine molecular interactions. We found that L. rhamnosus GG was able to interfere with Candida growth, morphogenesis and adhesion. These three aspects of Candida's physiology are all crucial to its opportunistic pathogenesis. In follow-up assays, we compared the activity of L. rhamnosus GG wild-type with its exopolysaccharide (EPS)-deficient mutant and purified EPS to evaluate the involvement of this outer carbohydrate layer. Our data demonstrate that purified EPS can both interfere with hyphal formation and adhesion to epithelial cells, which indicates that EPS is part of a combined molecular mechanism underlying the antihyphal and anti-adhesion mechanisms of L. rhamnosus GG.


Assuntos
Candida/efeitos dos fármacos , Candida/crescimento & desenvolvimento , Lacticaseibacillus rhamnosus/metabolismo , Proteoglicanas/farmacologia , Candida/genética , Candida/fisiologia , Hifas/efeitos dos fármacos , Hifas/crescimento & desenvolvimento , Lacticaseibacillus rhamnosus/química , Lacticaseibacillus rhamnosus/genética , Proteoglicanas/metabolismo
18.
Int J Pharm ; 505(1-2): 303-18, 2016 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-27050865

RESUMO

The increasing knowledge about the human microbiome leads to the awareness of how important probiotics can be for our health. Although further substantiation is required, it appears that several pathologies could be treated or prevented by the administration of pharmaceutical formulations containing such live health-beneficial bacteria. These pharmabiotics need to provide their effects until the end of shelf life, which can be optimally achieved by drying them before further formulation. However, drying processes, including spray-, freeze-, vacuum- and fluidized bed drying, induce stress on probiotics, thus decreasing their viability. Several protection strategies can be envisaged to enhance their viability, including addition of protective agents, controlling the process parameters and prestressing the probiotics prior to drying. Moreover, probiotic viability needs to be maintained during long-term storage. Overall, lower storage temperature and low moisture content result in good survival rates. Attention should also be given to the rehydration conditions of the dried probiotics, as this can exert an important effect on their revival. By describing not only the characteristics, but also the viability results obtained by the most relevant drying techniques in the probiotic industry, we hope to facilitate the deliberate choice of drying process and protection strategy for specific probiotic and pharmabiotic applications.


Assuntos
Química Farmacêutica/métodos , Viabilidade Microbiana , Probióticos/administração & dosagem , Liofilização , Humanos , Lorazepam , Microbiota , Probióticos/química , Fatores de Tempo
19.
Sci Rep ; 6: 28115, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27301427

RESUMO

Bacteriophage therapy is currently resurging as a potential complement/alternative to antibiotic treatment. However, preclinical evaluation lacks streamlined approaches. We here focus on preclinical approaches which have been implemented to assess bacteriophage efficacy against Pseudomonas biofilms and infections. Laser interferometry and profilometry were applied to measure biofilm matrix permeability and surface geometry changes, respectively. These biophysical approaches were combined with an advanced Airway Surface Liquid infection model, which mimics in vitro the normal and CF lung environments, and an in vivo Galleria larvae model. These assays have been implemented to analyze KTN4 (279,593 bp dsDNA genome), a type-IV pili dependent, giant phage resembling phiKZ. Upon contact, KTN4 immediately disrupts the P. aeruginosa PAO1 biofilm and reduces pyocyanin and siderophore production. The gentamicin exclusion assay on NuLi-1 and CuFi-1 cell lines revealed the decrease of extracellular bacterial load between 4 and 7 logs and successfully prevents wild-type Pseudomonas internalization into CF epithelial cells. These properties and the significant rescue of Galleria larvae indicate that giant KTN4 phage is a suitable candidate for in vivo phage therapy evaluation for lung infection applications.


Assuntos
Terapia por Fagos/métodos , Infecções por Pseudomonas/terapia , Fagos de Pseudomonas/genética , Animais , Carga Bacteriana , Biofilmes , Linhagem Celular , Fibrose Cística/patologia , Modelos Animais de Doenças , Células Epiteliais/virologia , Gentamicinas/farmacologia , Humanos , Concentração de Íons de Hidrogênio , Mariposas/microbiologia , Mutação , Fagos de Pseudomonas/classificação , Fagos de Pseudomonas/isolamento & purificação , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/patogenicidade , Pseudomonas aeruginosa/virologia , Proteínas Virais/química
20.
Front Microbiol ; 7: 279, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27014204

RESUMO

Pseudomonas syringae pv. porri, the causative agent of bacterial blight in leek (Allium porrum), is increasingly frequent causing problems in leek cultivation. Because of the current lack of control measures, novel bacteriophages were isolated to control this pathogen using phage therapy. Five novel phages were isolated from infected fields in Flanders (vB_PsyM_KIL1, vB_PsyM_KIL2, vB_PsyM_KIL3, vB_PsyM_KIL4, and vB_PsyM_KIL5), and were complemented with one selected host range mutant phage (vB_PsyM_KIL3b). Genome analysis of the phages revealed genome sizes between 90 and 94 kb and an average GC-content of 44.8%. Phylogenomic networking classified them into a novel clade, named the "KIL-like viruses," related to the Felixounalikevirus genus, together with phage phiPsa374 from P. syringae pv. actinidiae. In vitro characterization demonstrated the stability and lytic potential of these phages. Host range analysis confirmed heterogeneity within P. syringae pv. porri, leading to the development of a phage cocktail with a range that covers the entire set of 41 strains tested. Specific bio-assays demonstrated the in planta efficacy of phages vB_PsyM_KIL1, vB_PsyM_KIL2, vB_PsyM_KIL3, and vB_PsyM_KIL3b. In addition, two parallel field trial experiments on three locations using a phage cocktail of the six phages showed variable results. In one trial, symptom development was attenuated. These data suggest some potential for phage therapy in controlling bacterial blight of leek, pending optimization of formulation and application methods.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA