Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Chembiochem ; 24(20): e202300357, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37402642

RESUMO

Kelp is an abundant, farmable biomass-containing laminarin and alginate as major polysaccharides, providing an excellent model substrate to study their deconstruction by simple enzyme mixtures. Our previous study showed strong reactivity of the glycoside hydrolase family 55 during hydrolysis of purified laminarin, raising the question of its reactivity with intact kelp. In this study, we determined that a combination of a single glycoside hydrolase family 55 ß-1,3-exoglucanase with a broad-specificity alginate lyase from the polysaccharide lyase family 18 gives efficient hydrolysis of untreated kelp to a mixture of simple sugars, that is, glucose, gentiobiose, mannitol-end glucose, and mannuronic and guluronic acids and their soluble oligomers. Quantitative assignments from nanostructure initiator mass spectrometry (NIMS) and 2D HSQC NMR spectroscopy and analysis of the reaction time-course are provided. The data suggest that binary combinations of enzymes targeted to the unique polysaccharide composition of marine biomass are sufficient to deconstruct kelp into soluble sugars for microbial fermentation.


Assuntos
Celulases , Kelp , Kelp/metabolismo , Hidrólise , Polissacarídeo-Liases/metabolismo , Polissacarídeos , Glucose , Glicosídeo Hidrolases/metabolismo , Especificidade por Substrato
2.
J Biol Chem ; 294(6): 1877-1890, 2019 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-30541921

RESUMO

Lignin is a heterogeneous polymer of aromatic subunits that is a major component of lignocellulosic plant biomass. Understanding how microorganisms deconstruct lignin is important for understanding the global carbon cycle and could aid in developing systems for processing plant biomass into valuable commodities. Sphingomonad bacteria use stereospecific glutathione S-transferases (GSTs) called ß-etherases to cleave the ß-aryl ether (ß-O-4) bond, the most common bond between aromatic subunits in lignin. Previously characterized bacterial ß-etherases are homodimers that fall into two distinct GST subclasses: LigE homologues, which cleave the ß(R) stereoisomer of the bond, and LigF homologues, which cleave the ß(S) stereoisomer. Here, we report on a heterodimeric ß-etherase (BaeAB) from the sphingomonad Novosphingobium aromaticivorans that stereospecifically cleaves the ß(R)-aryl ether bond of the di-aromatic compound ß-(2-methoxyphenoxy)-γ-hydroxypropiovanillone (MPHPV). BaeAB's subunits are phylogenetically distinct from each other and from other ß-etherases, although they are evolutionarily related to LigF, despite the fact that BaeAB and LigF cleave different ß-aryl ether bond stereoisomers. We identify amino acid residues in BaeAB's BaeA subunit important for substrate binding and catalysis, including an asparagine that is proposed to activate the GSH cofactor. We also show that BaeAB homologues from other sphingomonads can cleave ß(R)-MPHPV and that they may be as common in bacteria as LigE homologues. Our results suggest that the ability to cleave the ß-aryl ether bond arose independently at least twice in GSTs and that BaeAB homologues may be important for cleaving the ß(R)-aryl ether bonds of lignin-derived oligomers in nature.


Assuntos
Proteínas de Bactérias/química , Glutationa Transferase/química , Lignina/química , Sphingomonadaceae/enzimologia , Catálise , Éteres/química
3.
Nucleic Acids Res ; 41(3): 1901-13, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23248007

RESUMO

The human immunodeficiency virus (HIV) requires a programmed -1 ribosomal frameshift for Pol gene expression. The HIV frameshift site consists of a heptanucleotide slippery sequence (UUUUUUA) followed by a spacer region and a downstream RNA stem-loop structure. Here we investigate the role of the RNA structure in promoting the -1 frameshift. The stem-loop was systematically altered to decouple the contributions of local and overall thermodynamic stability towards frameshift efficiency. No correlation between overall stability and frameshift efficiency is observed. In contrast, there is a strong correlation between frameshift efficiency and the local thermodynamic stability of the first 3-4 bp in the stem-loop, which are predicted to reside at the opening of the mRNA entrance channel when the ribosome is paused at the slippery site. Insertion or deletions in the spacer region appear to correspondingly change the identity of the base pairs encountered 8 nt downstream of the slippery site. Finally, the role of the surrounding genomic secondary structure was investigated and found to have a modest impact on frameshift efficiency, consistent with the hypothesis that the genomic secondary structure attenuates frameshifting by affecting the overall rate of translation.


Assuntos
Mudança da Fase de Leitura do Gene Ribossômico , HIV-1/genética , RNA Viral/química , Pareamento de Bases , Sequência de Bases , Dados de Sequência Molecular , Estabilidade de RNA , Subunidades Ribossômicas Menores de Eucariotos/química
4.
Nucleic Acids Res ; 40(5): 2140-51, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22058128

RESUMO

A novel isothermal titration calorimetry (ITC) method was applied to investigate RNA helical packing driven by the GAAA tetraloop-receptor interaction in magnesium and potassium solutions. Both the kinetics and thermodynamics were obtained in individual ITC experiments, and analysis of the kinetic data over a range of temperatures provided Arrhenius activation energies (ΔH(‡)) and Eyring transition state entropies (ΔS(‡)). The resulting rich dataset reveals strongly contrasting kinetic and thermodynamic profiles for this RNA folding system when stabilized by potassium versus magnesium. In potassium, association is highly exothermic (ΔH(25°C) = -41.6 ± 1.2 kcal/mol in 150 mM KCl) and the transition state is enthalpically barrierless (ΔH(‡) = -0.6 ± 0.5). These parameters are significantly positively shifted in magnesium (ΔH(25°C) = -20.5 ± 2.1 kcal/mol, ΔH(‡) = 7.3 ± 2.2 kcal/mol in 0.5 mM MgCl(2)). Mixed salt solutions approximating physiological conditions exhibit an intermediate thermodynamic character. The cation-dependent thermodynamic landscape may reflect either a salt-dependent unbound receptor conformation, or alternatively and more generally, it may reflect a small per-cation enthalpic penalty associated with folding-coupled magnesium uptake.


Assuntos
Dobramento de RNA , Termodinâmica , Calorimetria/métodos , Cinética , Cloreto de Magnésio , Modelos Moleculares , Cloreto de Potássio
5.
ACS Sustain Chem Eng ; 8(16): 6551-6563, 2020 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-34484989

RESUMO

Enzymes selectively hydrolyze the carbohydrate fractions of lignocellulosic biomass into corresponding sugars, but these processes are limited by low yields and slow catalytic turnovers. Under certain conditions, the rates and yields of enzymatic sugar production can be increased by pretreating biomass using solvents, heat and dilute acid catalysts. However, the mechanistic details underlying this behavior are not fully elucidated, and designing effective pretreatment strategies remains an empirical challenge. Herein, using a combination of solid-state and high-resolution magic-angle-spinning NMR, infrared spectroscopy and X-ray diffractometry, we show that the extent to which cellulase enzymes are able to hydrolyze solvent-pretreated biomass can be understood in terms of the ability of the solvent to break the chemical linkages between cellulose and non-cellulosic materials in the cell wall. This finding is of general significance to enzymatic biomass conversion research, and implications for designing improved biomass conversion strategies are discussed. These findings demonstrate the utility of solid-state NMR as a tool to elucidate the key chemical and physical changes that occur during the liquid-phase conversion of real biomass.

6.
J Mol Biol ; 431(6): 1217-1233, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30685401

RESUMO

Some glycoside hydrolases have broad specificity for hydrolysis of glycosidic bonds, potentially increasing their functional utility and flexibility in physiological and industrial applications. To deepen the understanding of the structural and evolutionary driving forces underlying specificity patterns in glycoside hydrolase family 5, we quantitatively screened the activity of the catalytic core domains from subfamily 4 (GH5_4) and closely related enzymes on four substrates: lichenan, xylan, mannan, and xyloglucan. Phylogenetic analysis revealed that GH5_4 consists of three major clades, and one of these clades, referred to here as clade 3, displayed average specific activities of 4.2 and 1.2 U/mg on lichenan and xylan, approximately 1 order of magnitude larger than the average for active enzymes in clades 1 and 2. Enzymes in clade 3 also more consistently met assay detection thresholds for reaction with all four substrates. We also identified a subfamily-wide positive correlation between lichenase and xylanase activities, as well as a weaker relationship between lichenase and xyloglucanase. To connect these results to structural features, we used the structure of CelE from Hungateiclostridium thermocellum (PDB 4IM4) as an example clade 3 enzyme with activities on all four substrates. Comparison of the sequence and structure of this enzyme with others throughout GH5_4 and neighboring subfamilies reveals at least two residues (H149 and W203) that are linked to strong activity across the substrates. Placing GH5_4 in context with other related subfamilies, we highlight several possibilities for the ongoing evolutionary specialization of GH5_4 enzymes.


Assuntos
Bactérias/enzimologia , Glicosídeo Hidrolases/metabolismo , Bactérias/química , Bactérias/genética , Bactérias/metabolismo , Evolução Molecular , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/genética , Modelos Moleculares , Filogenia , Conformação Proteica , Especificidade por Substrato
7.
Methods Enzymol ; 567: 181-213, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26794355

RESUMO

The real-time power response inherent in an isothermal titration calorimetry (ITC) experiment provides an opportunity to directly analyze association kinetics, which, together with the conventional measurement of thermodynamic quantities, can provide an incredibly rich description of molecular binding in a single experiment. Here, we detail our application of this method, in which interactions occurring with relaxation times ranging from slightly below the instrument response time constant (12.5 s in this case) to as large as 600 s can be fully detailed in terms of both the thermodynamics and kinetics. In a binding titration scenario, in the most general case an injection can reveal an association rate constant (kon). Under more restrictive conditions, the instrument time constant-corrected power decay following each injection is simply an exponential decay described by a composite rate constant (kobs), from which both kon and the dissociation rate constant (koff) can be extracted. The data also support the viability of this exponential approach, for kon only, for a slightly larger set of conditions. Using a bimolecular RNA folding model and a protein-ligand interaction, we demonstrate and have internally validated this approach to experiment design, data processing, and error analysis. An updated guide to thermodynamic and kinetic regimes accessible by ITC is provided.


Assuntos
Calorimetria/métodos , Cinética , Ligação Proteica , Termodinâmica
8.
Biochim Biophys Acta ; 1655(1-3): 179-83, 2004 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-15100030

RESUMO

The roles of Ca(2+) in H(2)O oxidation may be as a site of substrate binding, and as a structural component of the photosystem II O(2)-evolving complex. One indication of this dual role of the metal is revealed by probing the Mn cluster in the Ca(2+) depleted O(2) evolving complex that retains extrinsic 23- and 17-kDa polypeptides with reductants (NH(2)OH and hydroquinone) [Biochemistry 41 (2002) 958]. Calcium appears to bind to photosystem II at a site where it could bind substrate H(2)O. Equilibration of Ca(2+) with this binding site is facilitated by increased ionic strength, and incubation of Ca(2+) reconstitution mixtures at 22 degrees C accelerates equilibration of Ca(2+) with the site. The Ca(2+) reconstituted enzyme system regains properties of unperturbed photosystem II: Sensitivity to NH(2)OH inhibition is decreased, and Cl(-) binding with increased affinity can be detected. The ability of ionic strength and temperature to facilitate rebinding of Ca(2+) to the intact O(2) evolving complex suggests that the structural environment of the oxidizing side of photosystem II may be flexible, rather than rigid.


Assuntos
Cálcio/metabolismo , Complexo de Proteína do Fotossistema II/química , Complexo de Proteína do Fotossistema II/metabolismo , Sítios de Ligação , Domínio Catalítico , Cinética , Manganês/química , Oxirredução , Água/metabolismo
9.
Methods Mol Biol ; 1118: 71-95, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24395410

RESUMO

In nature, bacteria and fungi are able to utilize recalcitrant plant materials by secreting a diverse set of enzymes. While genomic sequencing efforts offer exhaustive lists of genes annotated as potential polysaccharide-degrading enzymes, biochemical and functional characterizations of the encoded proteins are still needed to realize the full potential of this natural genomic diversity. This chapter outlines an application of wheat germ cell-free translation to the study of biofuel enzymes using genes from Clostridium thermocellum, a model cellulolytic organism. Since wheat germ extract lacks enzymatic activities that can hydrolyze insoluble polysaccharide substrates and is likewise devoid of enzymes that consume the soluble sugar products, the cell-free translation reactions provide a clean background for production and study of the reactions of biofuel enzymes. Examples of assays performed with individual enzymes or with small sets of enzymes obtained directly from cell-free translation are provided.


Assuntos
Biocombustíveis/microbiologia , Clostridium thermocellum/enzimologia , Clostridium thermocellum/genética , Biossíntese de Proteínas , Sequência de Bases , Biomassa , Metabolismo dos Carboidratos , Sistema Livre de Células , Celulose/metabolismo , Clonagem Molecular , Primers do DNA/genética , Engenharia Genética , Hidrólise , Ácidos Fosfóricos/metabolismo , Plasmídeos/genética , Reação em Cadeia da Polimerase , Triticum/metabolismo
10.
J Mol Biol ; 377(1): 9-27, 2008 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-18237740

RESUMO

To characterize driving forces and driven processes in formation of a large-interface, wrapped protein-DNA complex analogous to the nucleosome, we have investigated the thermodynamics of binding the 34-base pair (bp) H' DNA sequence to the Escherichia coli DNA-remodeling protein integration host factor (IHF). Isothermal titration calorimetry and fluorescence resonance energy transfer are applied to determine effects of salt concentration [KCl, KF, K glutamate (KGlu)] and of the excluded solute glycine betaine (GB) on the binding thermodynamics at 20 degrees C. Both the binding constant K(obs) and enthalpy Delta H degrees (obs) depend strongly on [salt] and anion identity. Formation of the wrapped complex is enthalpy driven, especially at low [salt] (e.g., Delta H(o)(obs)=-20.2 kcal x mol(-1) in 0.04 M KCl). Delta H degrees (obs) increases linearly with [salt] with a slope (d Delta H degrees (obs)/d[salt]), which is much larger in KCl (38+/-3 kcal x mol(-1) M(-1)) than in KF or KGlu (11+/-2 kcal x mol(-1) M(-1)). At 0.33 M [salt], K(obs) is approximately 30-fold larger in KGlu or KF than in KCl, and the [salt] derivative SK(obs)=dlnK(obs)/dln[salt] is almost twice as large in magnitude in KCl (-8.8+/-0.7) as in KF or KGlu (-4.7+/-0.6). A novel analysis of the large effects of anion identity on K(obs), SK(obs) and on Delta H degrees (obs) dissects coulombic, Hofmeister, and osmotic contributions to these quantities. This analysis attributes anion-specific differences in K(obs), SK(obs), and Delta H degrees (obs) to (i) displacement of a large number of water molecules of hydration [estimated to be 1.0(+/-0.2)x10(3)] from the 5340 A(2) of IHF and H' DNA surface buried in complex formation, and (ii) significant local exclusion of F(-) and Glu(-) from this hydration water, relative to the situation with Cl(-), which we propose is randomly distributed. To quantify net water release from anionic surface (22% of the surface buried in complexation, mostly from DNA phosphates), we determined the stabilizing effect of GB on K(obs): dlnK(obs)/d[GB]=2.7+/-0.4 at constant KCl activity, indicating the net release of ca. 150 H(2)O molecules from anionic surface.


Assuntos
DNA Bacteriano/química , DNA Bacteriano/metabolismo , Escherichia coli/metabolismo , Fatores Hospedeiros de Integração/química , Fatores Hospedeiros de Integração/metabolismo , Conformação de Ácido Nucleico , Água/metabolismo , Betaína/farmacologia , Calorimetria , Escherichia coli/efeitos dos fármacos , Transferência Ressonante de Energia de Fluorescência , Íons , Cinética , Modelos Moleculares , Conformação de Ácido Nucleico/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Sais/farmacologia , Termodinâmica , Titulometria
11.
J Mol Biol ; 384(3): 702-17, 2008 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-18845162

RESUMO

Little is known about the thermodynamic forces that drive the folding pathways of higher-order RNA structure. In this study, we employ calorimetric [isothermal titration calorimetry (ITC) and differential scanning calorimetry (DSC)] and spectroscopic (NMR and UV) methods to characterize the thermodynamics of the GAAA tetraloop-receptor interaction, utilizing a previously described bivalent construct. ITC studies indicate that the bivalent interaction is enthalpy driven and highly stable, with a binding constant (K(obs)) of 5.5x10(6) M(-1) and enthalpy (DeltaH(obs)(o)) of -33.8 kcal/mol at 45 degrees C in 20 mM KCl and 2 mM MgCl(2). Thus, we derive the DeltaH(obs)(o) for a single tetraloop-receptor interaction to be -16.9 kcal/mol at these conditions. UV absorbance data indicate that an increase in base stacking quality contributes to the enthalpy of complex formation. These highly favorable thermodynamics are consistent with the known critical role for the tetraloop-receptor motif in the folding of large RNAs. Additionally, a significant heat capacity change (DeltaC(p,obs)(o)) of -0.24 kcal mol(-1) K(-1) was determined by ITC. DSC and UV-monitored thermal denaturation experiments indicate that the bivalent tetraloop-receptor construct follows a minimally five-state unfolding pathway and suggest the observed DeltaC(p,obs)(o) for the interaction results from a temperature-dependent unbound receptor RNA structure.


Assuntos
RNA/química , Calorimetria/métodos , Varredura Diferencial de Calorimetria , Transferência Ressonante de Energia de Fluorescência , Temperatura Alta , Cinética , Mutação , Conformação de Ácido Nucleico , Ácidos Nucleicos Heteroduplexes , Conformação Proteica , Desnaturação Proteica , Dobramento de Proteína , Espectrofotometria Ultravioleta/métodos , Temperatura , Termodinâmica
12.
Biochemistry ; 41(3): 958-66, 2002 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-11790119

RESUMO

A 5 min exposure of photosystem II to a pH 3 citric acid solution is a simple method for selective removal of Ca(2+) from the O(2)-evolving complex. The resulting preparation retains the 23 and 17 kDa extrinsic polypeptides, but the activity of this material is only 10-20% of that of an untreated control sample. Biochemical characterization of citrate-treated photosystem II reveals that some reaction centers lose the extrinsic proteins during citrate treatment. Furthermore, a comparison of photosystem II preparations treated with citrate, or depleted of 23 and 17 kDa extrinsic polypeptides by high-salt treatment, shows that low concentrations of a small reductant, NH(2)OH, which has little effect on the activity of intact photosystem II, can reduce and inhibit the Mn cluster in both types of preparations. In contrast, a large reductant, hydroquinone, cannot access the majority of O(2)-evolving centers in citrate-treated preparations, while 23 and 17 kDa-depleted material is rapidly inactivated by the reductant. Incubation of the citrate-treated samples in high ( approximately 60 mM) concentrations of CaCl(2) restores 50% of the lost activity; this Ca(2+)-reconstituted activity is chelator-insensitive, indicating that rebinding of Ca(2+) restores the structural integrity of the O(2)-evolving complex. A characterization of Ca(2+) and Cl(-) affinities in steady-state activity assays shows that citrate-treated preparations exhibit a Cl(-) requirement similar to that of polypeptide-depleted photosystem II, while Ca(2+) reactivation of O(2) evolution appears to occur at two structurally distinct sites. One site exhibits a high Ca(2+) affinity, similar to that found in polypeptide-depleted samples, but a second, lower-affinity site also exists, with a K(M) that is approximately 10 times greater than that of the high-affinity site, which is associated with centers that retain the extrinsic polypeptides. These data indicate that citrate-induced Ca(2+) depletion causes release of the 23 and 17 kDa extrinsic polypeptides from some photosystem II reaction centers, and also modifies the structure of the polypeptide-retaining O(2)-evolving centers so that the Mn cluster is exposed to small, but not large, reductants. This change may be due to subtle modifications to the structure of the photosystem II extrinsic proteins that produces a new pathway between the solvent and the Mn cluster or, alternatively, to the opening of an existing channel in the intrinsic lumenal polypeptide domain, between the solvent and the Mn cluster, that is normally occluded by a bound Ca(2+) atom.


Assuntos
Cálcio/metabolismo , Oxigênio/metabolismo , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Cloreto de Cálcio/farmacologia , Ácido Cítrico/farmacologia , Concentração de Íons de Hidrogênio , Cinética , Complexo de Proteínas do Centro de Reação Fotossintética/isolamento & purificação , Complexo de Proteína do Fotossistema II , Cloreto de Sódio/farmacologia , Spinacia oleracea/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA