Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
J Physiol ; 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39283968

RESUMO

Precise regulation of sarcomeric contraction is essential for normal cardiac function. The heart must generate sufficient force to pump blood throughout the body, but either inadequate or excessive force can lead to dysregulation and disease. Myosin regulatory light chain (RLC) is a thick-filament protein that binds to the neck of the myosin heavy chain. Post-translational phosphorylation of RLC (RLC-P) by myosin light chain kinase is known to influence acto-myosin interactions, thereby increasing force production and Ca2+-sensitivity of contraction. Here, we investigated the role of RLC-P on cardiac structure and function as sarcomere length and [Ca2+] were altered. We found that at low, non-activating levels of Ca2+, RLC-P contributed to myosin head disorder, though there were no effects on isometric stress production and viscoelastic stiffness. With increases in sarcomere length and Ca2+-activation, the structural changes due to RLC-P become greater, which translates into greater force production, greater viscoelastic stiffness, slowed myosin detachment rates and altered nucleotide handling. Altogether, these data suggest that RLC-P may alter thick-filament structure by releasing ordered, off-state myosin. These more disordered myosin heads are available to bind actin, which could result in greater force production as Ca2+ levels increase. However, prolonged cross-bridge attachment duration due to slower ADP release could delay relaxation long enough to enable cross-bridge rebinding. Together, this work further elucidates the effects of RLC-P in regulating muscle function, thereby promoting a better understanding of thick-filament regulatory contributions to cardiac function in health and disease. KEY POINTS: Myosin regulatory light chain (RLC) is a thick-filament protein in the cardiac sarcomere that can be phosphorylated (RLC-P), and changes in RLC-P are associated with cardiac dysfunction and disease. This study assesses how RLC-P alters cardiac muscle structure and function at different sarcomere lengths and calcium concentrations. At low, non-activating levels of Ca2+, RLC-P contributed to myofilament disorder, though there were no effects on isometric stress production and viscoelastic stiffness. With increases in sarcomere length and Ca2+-activation, the structural changes due to RLC-P become greater, which translates into greater force production, greater viscoelastic stiffness, slower myosin detachment rate and altered cross-bridge nucleotide handling rates. This work elucidates the role of RLC-P in regulating muscle function and facilitates understanding of thick-filament regulatory protein contributions to cardiac function in health and disease.

2.
J Muscle Res Cell Motil ; 45(3): 115-122, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38717549

RESUMO

Myotropes are pharmaceuticals that have recently been developed or are under investigation for the treatment of heart diseases. Myotropes have had varied success in clinical trials. Initial research into myotropes have widely focused on animal models of cardiac dysfunction in comparison with normal animal cardiac physiology-primarily using males. In this study we examined the effect of danicamtiv, which is one type of myotrope within the class of myosin activators, on contractile function in permeabilized (skinned) myocardial strips from male and female Sprague-Dawley rats. We found that danicamtiv increased steady-state isometric force production at sub-maximal calcium levels, leading to greater Ca2+-sensitivity of contraction for both sexes. Danicamtiv did not affect maximal Ca2+-activated force for either sex. Sinusoidal length-perturbation analysis was used to assess viscoelastic myocardial stiffness and cross-bridge cycling kinetics. Data from these measurements did not vary with sex, and the data suggest that danicamtiv slows cross-bridge cycling kinetics. These findings imply that danicamtiv increases force production via increasing cross-bridge contributions to activation of contraction, especially at sub-maximal Ca2+-activation. The inclusion of both sexes in animal models during the formative stages of drug development could be helpful for understanding the efficacy or limitation of a drug's therapeutic impact on cardiac function.


Assuntos
Contração Miocárdica , Ratos Sprague-Dawley , Animais , Feminino , Masculino , Ratos , Contração Miocárdica/efeitos dos fármacos , Contração Isométrica/efeitos dos fármacos , Miocárdio/metabolismo , Cinética , Cálcio/metabolismo , Ureia/análogos & derivados
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA