Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Opt Express ; 30(23): 42564-42578, 2022 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-36366708

RESUMO

This paper presents a novel method for optical probing by generating optical fields with characteristics of wavelets. The optical wavelets form a basis of rotated asymmetric beams with scaled orbital angular momentum (OAM) and beam sizes. The probing method was used experimentally to measure the continuous wavelet transform of a turbulent propagation path, giving insight into the angular properties about a fixed radius. The wavelet transform of a three-dimensional turbulence distribution was measured; the measurements are much faster than the turbulence changes, allowing characterization of an instantaneous realization of turbulence over time. Results show highly localized regions of OAM in space through the turbulence and characteristics of the turbulence can be extracted from the wavelet transforms.

2.
Opt Express ; 30(26): 47598-47611, 2022 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-36558685

RESUMO

Propagation of laser light is distorted in the presence of atmospheric turbulence. This poses an issue for sensing, free-space optical communications, and transmission of power. The presented system offers a novel solution to mitigate the effects of turbulence. By rapidly probing a turbulent volume by varying a beam's spatial and phase characteristics, the best transmission mode can be determined and updated in real time. Unlike a traditional tip-tilt system, this scheme is fully electronic, and has a scalable architecture to leverage multiple optical transmission paths simultaneously. This optical control system greatly improves power efficiency and successful recovery of data through environments with strong turbulence.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA