Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
J Environ Manage ; 359: 121068, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38728989

RESUMO

Anaerobic digestion (AD) has become a popular technique for organic waste management while offering economic and environmental advantages. As AD becomes increasingly prevalent worldwide, research efforts are primarily focused on optimizing its processes. During the operation of AD systems, the occurrence of unstable events is inevitable. So far, numerous conclusions have been drawn from full and lab-scale studies regarding the driving factors of start-up perturbations. However, the lack of standardized practices reported in start-up studies raises concerns about the comparability and reliability of obtained data. This study aims to develop a knowledge database and investigate the possibility of applying machine learning techniques on experimentation-extracted data to assist start-up planning and monitoring. Thus, a standardized database referencing 75 cases of start-up of one-stage wet continuously-stirred tank reactors (CSTR) processing agricultural, industrial, or municipal organic effluent in mono-digestion from 31 studies was constructed. 10 % of the total observations included in this database concern failed start-up experiments. Then, correlations between the parameters and their impacts on the start-up duration were studied using multivariate analysis and a model-based ranking methodology. Insights into trends of choices were highlighted through the correlation analysis of the database. As such, scenarios favoring short start-up duration were found to involve relatively low retention times (average initial and final hydraulic retention times, (HRTi) and (HRTf) of 26.25 and 20.6 days, respectively), high mean organic loading rates (average OLRmean of 5.24 g VS·d-1·L -1) and the processing of highly fermentable substrates (average feed volatile solids (VSfeed) of 81.35 g L-1). The model-based ranking of AD parameters demonstrated that the HRTf, the VSfeed, and the target temperature (Tf) have the strongest impact on the start-up duration, receiving the highest relative scores among the evaluated AD parameters. The database could serve as a reference for comparison purposes of future start-up studies allowing the identification of factors that should be closely controlled.


Assuntos
Reatores Biológicos , Anaerobiose , Gerenciamento de Resíduos/métodos
2.
J Environ Manage ; 352: 119964, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38228044

RESUMO

The application of sewage sludge to agricultural land is facing increasing restrictions due to concerns about various micropollutants, including polycyclic aromatic hydrocarbons (PAHs), dioxins and furans (PCDD/Fs), polychlorinated biphenyls (PCBs), per- and poly-fluoroalkyl substances (PFAS), and heavy metals (HMs). As an alternative approach to manage this residue, the use of pyrolysis, a process that transforms sludge into biochar, a carbon-rich solid material, is being explored. Despite the potential benefits of pyrolysis, there is limited data on its effectiveness in removing micropollutants and the potential presence of harmful elements in the resulting biochar. This study aims to evaluate the impact of the temperature and the use of a carrier gas (N2) during a two-stage pyrolysis and cooling on micropollutant removal. Pilot-scale tests showed that a higher temperature (650 °C) and the use of a carrier gas (0.4 L/min N2) during the pyrolysis and the cooling process led to a reduction of PAHs, PCDD/Fs, PCBs and PFAS below their detection limits. As such, the generated biochar aligns with the guidelines set by the International Biochar Initiative (IBI) and the European Biochar Certificate (EBC) for all micropollutants, except for zinc and copper. Additional investigation is required to determine whether the micropollutants undergo destruction or transition into other pyrolysis end-products, such as the gas or liquid phase.


Assuntos
Fluorocarbonos , Bifenilos Policlorados , Dibenzodioxinas Policloradas , Esgotos/química , Temperatura , Dibenzofuranos , Pirólise , Carvão Vegetal/química
3.
Waste Manag ; 174: 618-629, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38154418

RESUMO

Biochar obtained from sewage sludge serves as a valuable soil amendment in agriculture, enhancing soil properties by increasing the nutrient content, cation exchange capacity, water retention, and oxygen transmission. However, its utilisation is hampered by the presence of micropollutants such as polycyclic aromatic hydrocarbons (PAHs), polychlorinated dibenzodioxins (PCDDs), polychlorinated dibenzofurans (PCDFs), polychlorinated biphenyls (PCBs), and volatile organic compounds (VOCs). Previous studies indicate that the type and amount of micropollutants can be significantly adjusted by selecting the right process parameters. This literature review provides an overview of how (1) pyrolysis temperature, (2) carrier gas flow and type, (3) heating rate, and (4) residence time affect the concentration of micropollutants in biochar produced from sewage sludge. The micropollutants targeted are those listed by the European Biochar Certificate (EBC) and by the International Biochar Institution (IBI), including PAHs, PCDD/Fs, PCBs and VOCs. In addition, per- and poly-fluoroalkyl substances (PFAS) are also considered due to their presence in sewage sludge. The findings suggest that higher pyrolysis temperatures reduce micropollutant levels. Moreover, the injection of a carrier gas (N2 or CO2) during the pyrolysis and cooling processes effectively lowers PAHs and PCDD/Fs, by reducing the contact of biochar with oxygen, which is crucial in mitigating micropollutants. Nevertheless, limited available data impedes an assessment of the impact of these parameters on PFAS in biochar. In addition, further research is essential to understand the effects of carrier gas type, heating rate, and residence time in order to determine the optimal pyrolysis process parameters for generating clean biochar.


Assuntos
Fluorocarbonos , Bifenilos Policlorados , Dibenzodioxinas Policloradas , Hidrocarbonetos Policíclicos Aromáticos , Esgotos , Bifenilos Policlorados/análise , Dibenzofuranos , Pirólise , Carvão Vegetal , Solo , Oxigênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA