Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
J Theor Biol ; 593: 111898, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38996911

RESUMO

The CD8+ T cell response is the main determinant of viral clearance during influenza infection. However, influenza viral dynamics and the respective immune responses are affected by the host's age. To investigate age-related differences in the CD8+ T cell immune response dynamics, we propose 16 ordinary differential equation models of existing experimental data. These data consist of viral titer and CD8+ T cell counts collected periodically over a period of 19 days from adult and aged mice infected with influenza A/Puerto Rico/8/34 (H1N1). We use the corrected Akaike Information Criterion to identify the models which best represent the considered data. Our model selection process indicates differences in mechanisms which reduce the CD8+ T cell response: linear downregulation is favored for adult mice, while baseline exponential decay is favored for aged mice. Parameter fitting of the top ranked models suggests that the aged population has reduced CD8+ T cell proliferation compared to the adult population. More experimental work is needed to determine the specific immunological features through which age might cause these differences. A better understanding of the immunological mechanisms by which aging leads to discrepant CD8+ T cell dynamics may inform future treatment strategies.

2.
J Math Biol ; 88(4): 46, 2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38519724

RESUMO

Emerging and re-emerging pathogens are latent threats in our society with the risk of killing millions of people worldwide, without forgetting the severe economic and educational backlogs. From COVID-19, we learned that self isolation and quarantine restrictions (confinement) were the main way of protection till availability of vaccines. However, abrupt lifting of social confinement would result in new waves of new infection cases and high death tolls. Here, inspired by how an extracellular solution can make water move into or out of a cell through osmosis, we define confinement tonicity. This can serve as a standalone measurement for the net direction and magnitude of flows between the confined and deconfined susceptible compartments. Numerical results offer insights on the effects of easing quarantine restrictions.


Assuntos
COVID-19 , Epidemias , Humanos , SARS-CoV-2 , COVID-19/epidemiologia , COVID-19/prevenção & controle , Epidemias/prevenção & controle , Quarentena
3.
Cytometry A ; 103(8): 655-663, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-36974731

RESUMO

The identification of kinematic subpopulations is of paramount importance to understanding the biological nature of the sperm heterogeneity. Nowadays, the data of motility parameters obtained by a computer-assisted sperm analysis (CASA) system has been used as input to distinct algorithms to identify kinematic subpopulations. In contrast, the images of the trajectories were depicted only as examples of the patterns of motility in each subpopulation. Here, python code was written to reconstruct the images of trajectories, from their coordinates, then the images of trajectories were used as input to a machine learning clustering algorithm of classification, and the subpopulations were described statistically by the motility parameters. Finally, the images of trajectories in each subpopulation were displayed in a way we called Pollock plots. Semen samples of boar sperm were treated with distinct concentrations of ketanserin (an antagonist of the 5-HT2 receptor of serotonin) and untreated samples were used as a control. The motility of sperm in each sample was analyzed at 0 and 30 min of incubation. Six subpopulations were found. The subpopulation 2 presented the highest values of velocities at 0 or 30 min. After 30 min of incubation, the ketanserin increased the values of the curvilinear velocity at high concentrations, whereas the linearity and the straight velocity decreased. Our computational model permits better identification of the kinematic subpopulations than the traditional approach and provides insights onto the heterogeneity of the response to ketanserin; thus, it could significantly impact the research on the relationship between sperm heterogeneity-fertility.


Assuntos
Sêmen , Motilidade dos Espermatozoides , Masculino , Animais , Suínos , Sêmen/fisiologia , Ketanserina/farmacologia , Espermatozoides/fisiologia , Análise do Sêmen/métodos
4.
Bioinformatics ; 37(2): 229-235, 2021 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-32730562

RESUMO

MOTIVATION: Influenza viruses are a cause of large outbreaks and pandemics with high death tolls. A key obstacle is that flu vaccines have inconsistent performance, in the best cases up to 60% effectiveness, but it can be as low as 10%. Uncovering the hidden pathways of how antibodies (Abs) induced by one influenza strain are effective against another, cross-reaction, is a central vexation for the design of universal flu vaccines. RESULTS: We conceive a stochastic model that successfully represents the antibody cross-reactive data from mice infected with H3N2 influenza strains and further validation with cross-reaction data of H1N1 strains. Using a High-Performance Computing cluster, several aspects and parameters in the model were tested. Computational simulations highlight that changes in time of infection and the B-cells population are relevant, however, the affinity threshold of B-cells between consecutive infections is a necessary condition for the successful Abs cross-reaction. Our results suggest a 3-D reformulation of the current influenza antibody landscape for the representation and modeling of cross-reactive data. AVAILABILITY AND IMPLEMENTATION: The full code as a testing/simulation platform is freely available here: https://github.com/systemsmedicine/Antibody_cross-reaction_dynamics. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Influenza Humana , Animais , Reações Cruzadas , Vírus da Influenza A Subtipo H3N2 , Camundongos
5.
Automatica (Oxf) ; 144: 110496, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35936927

RESUMO

Mathematical models are critical to understand the spread of pathogens in a population and evaluate the effectiveness of non-pharmaceutical interventions (NPIs). A plethora of optimal strategies has been recently developed to minimize either the infected peak prevalence ( I P P ) or the epidemic final size ( E F S ). While most of them optimize a simple cost function along a fixed finite-time horizon, no consensus has been reached about how to simultaneously handle the I P P and the E F S , while minimizing the intervention's side effects. In this work, based on a new characterization of the dynamical behaviour of SIR-type models under control actions (including the stability of equilibrium sets in terms of herd immunity), we study how to minimize the E F S while keeping the I P P controlled at any time. A procedure is proposed to tailor NPIs by separating transient from stationary control objectives: the potential benefits of the strategy are illustrated by a detailed analysis and simulation results related to the COVID-19 pandemic.

6.
Bioinformatics ; 36(8): 2618-2619, 2020 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-31851311

RESUMO

MOTIVATION: Partial differential equations (PDEs) is a well-established and powerful tool to simulate multi-cellular biological systems. However, available free tools for validation against data are on development. RESULTS: The PDEparams module provides a flexible interface and readily accommodates different parameter analysis tools in PDE models such as computation of likelihood profiles, and parametric bootstrapping, along with direct visualization of the results. To our knowledge, it is the first open, freely available tool for parameter fitting of PDE models. AVAILABILITY AND IMPLEMENTATION: PDEparams is distributed under the MIT license. The source code, usage instructions and examples are freely available on GitHub at github.com/systemsmedicine/PDE_params. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Biologia Computacional , Software , Probabilidade
7.
Phys Rev Lett ; 126(18): 180502, 2021 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-34018787

RESUMO

We introduce sequential analysis in quantum information processing, by focusing on the fundamental task of quantum hypothesis testing. In particular, our goal is to discriminate between two arbitrary quantum states with a prescribed error threshold ε when copies of the states can be required on demand. We obtain ultimate lower bounds on the average number of copies needed to accomplish the task. We give a block-sampling strategy that allows us to achieve the lower bound for some classes of states. The bound is optimal in both the symmetric as well as the asymmetric setting in the sense that it requires the least mean number of copies out of all other procedures, including the ones that fix the number of copies ahead of time. For qubit states we derive explicit expressions for the minimum average number of copies and show that a sequential strategy based on fixed local measurements outperforms the best collective measurement on a predetermined number of copies. Whereas for general states the number of copies increases as log1/ε, for pure states sequential strategies require a finite average number of samples even in the case of perfect discrimination, i.e., ε=0.

8.
J Theor Biol ; 531: 110894, 2021 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-34508758

RESUMO

Vaccination remains a critical element in the eventual solution to the COVID-19 public health crisis. Many vaccines are already being mass produced and supplied in many countries. However, the COVID-19 vaccination programme will be the biggest in history. Reaching herd immunity will require an unprecedented mass immunisation campaign that will take several months and millions of dollars. Using different network models, COVID-19 pandemic dynamics of different countries can be recapitulated such as in Italy. Stochastic computational simulations highlight that peak epidemic sizes in a population strongly depend on the network structure. Assuming a vaccine efficacy of at least 80% in a mass vaccination program, at least 70% of a given population should be vaccinated to obtain herd immunity, independently of the network structure. If the vaccine efficacy reports lower levels of efficacy in practice, then the coverage of vaccination would be needed to be even higher. Simulations suggest that the "Ring of Vaccination" strategy, vaccinating susceptible contact and contact of contacts, would prevent new waves of COVID -19 meanwhile a high percent of the population is vaccinated.


Assuntos
COVID-19 , Vacinas , Vacinas contra COVID-19 , Humanos , Imunidade Coletiva , Vacinação em Massa , Pandemias , SARS-CoV-2 , Vacinação
9.
Commun Nonlinear Sci Numer Simul ; 95: 105584, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33162723

RESUMO

The 2019 coronavirus disease (COVID-19) is now a global pandemic. Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) is the causative pathogen of COVID-19. Here, we study an in-host model that highlights the effector T cell response to SARS-CoV-2. The stability of a unique positive equilibrium point, with viral load V * , suggests that the virus may replicate fast enough to overcome T cell response and cause infection. This overcoming is the bifurcation point, near which the orders of magnitude for V * can be sensitive to numerical changes in the parameter values. Our work offers a mathematical insight into how SARS-CoV-2 causes the disease.

10.
Annu Rev Control ; 52: 587-601, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34093069

RESUMO

Mathematical models describing SARS-CoV-2 dynamics and the corresponding immune responses in patients with COVID-19 can be critical to evaluate possible clinical outcomes of antiviral treatments. In this work, based on the concept of virus spreadability in the host, antiviral effectiveness thresholds are determined to establish whether or not a treatment will be able to clear the infection. In addition, the virus dynamic in the host - including the time-to-peak and the final monotonically decreasing behavior - is characterized as a function of the time to treatment initiation. Simulation results, based on nine patient data, show the potential clinical benefits of a treatment classification according to patient critical parameters. This study is aimed at paving the way for the different antivirals being developed to tackle SARS-CoV-2.

11.
BMC Biotechnol ; 20(1): 29, 2020 05 29.
Artigo em Inglês | MEDLINE | ID: mdl-32471409

RESUMO

BACKGROUND: The bacterial genus Exiguobacterium includes several species that inhabit environments with a wide range of temperature, salinity, and pH. This is why the microorganisms from this genus are known generically as polyextremophiles. Several environmental isolates have been explored and characterized for enzyme production as well as for bioremediation purposes. In this line, toxic metal(loid) reduction by these microorganisms represents an approach to decontaminate soluble metal ions via their transformation into less toxic, insoluble derivatives. Microbial-mediated metal(loid) reduction frequently results in the synthesis of nanoscale structures-nanostructures (NS) -. Thus, microorganisms could be used as an ecofriendly way to get NS. RESULTS: We analyzed the tolerance of Exiguobacterium acetylicum MF03, E. aurantiacum MF06, and E. profundum MF08 to Silver (I), gold (III), and tellurium (IV) compounds. Specifically, we explored the ability of cell-free extracts from these bacteria to reduce these toxicants and synthesize NS in vitro, both in the presence or absence of oxygen. All isolates exhibited higher tolerance to these toxicants in anaerobiosis. While in the absence of oxygen they showed high tellurite- and silver-reducing activity at pH 9.0, whereas AuCl4- which was reduced at pH 7.0 in both conditions. Given these results, cell-free extracts were used to synthesize NS containing silver, gold or tellurium, characterizing their size, morphology and chemical composition. Silver and tellurium NS exhibited smaller size under anaerobiosis and their morphology was circular (silver NS), starred (tellurium NS) or amorphous (gold NS). CONCLUSIONS: This nanostructure-synthesizing ability makes these isolates interesting candidates to get NS with biotechnological potential.


Assuntos
Extratos Celulares/química , Exiguobacterium/metabolismo , Ouro/química , Nanopartículas Metálicas/química , Prata/química , Telúrio/química , Aerobiose , Anaerobiose , Antibacterianos/farmacologia , Biodegradação Ambiental , Extratos Celulares/farmacologia , Exiguobacterium/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Temperatura
12.
J Theor Biol ; 506: 110406, 2020 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-32771533

RESUMO

Riboswitches are cis-acting regulatory mRNA elements in bacteria, that modulate the expression of their associated genes in response to a cognate metabolite, operating either on the level of translation or transcription. Transcriptional riboswitches have to fold into functional structures as they are being synthesized and, only if transcription rates and ligand binding kinetics match, structured transcription intermediates are enabled to undergo ligand-dependent conformational refolding as a prerequisite for ligand-mediated gene expression. Therefore, transcription rates are of essential importance for functional riboswitch-mediated gene regulation. Here, we propose a generalized modeling framework for the kinetic mechanisms of transcriptional riboswitches. The formalism accommodates time-dependent transcription rates and changes of metabolite concentration and permits incorporation of variations in transcription rate depending on transcript length. We derive explicit analytical expressions for the fraction of transcripts that determine repression or activation of gene expression as a function of pause site location and its slowing down of transcription for the case of the (2'dG)-sensing riboswitch from Mesoplasma florum. Our modeling challenges the current view on the exclusive importance of metabolite binding to transcripts containing only the aptamer domain. Numerical simulations of transcription proceeding in a continuous manner under time-dependent changes of metabolite concentration further suggest that rapid modulations in concentration result in a reduced dynamic range for riboswitch function regardless of transcription rate, while a combination of slow modulations and small transcription rates ensures a wide range of finely tuneable regulatory outcomes.


Assuntos
Riboswitch , Entomoplasmataceae , Cinética , Ligantes , Conformação de Ácido Nucleico , Riboswitch/genética
13.
Molecules ; 25(4)2020 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-32059518

RESUMO

In continuation of our efforts to identify promising antileishmanial agents based on the chroman scaffold, we synthesized several substituted 2H-thiochroman derivatives, including thiochromenes, thichromanones and hydrazones substituted in C-2 or C-3 with carbonyl or carboxyl groups. Thirty-two compounds were thus obtained, characterized, and evaluated against intracellular amastigotes of Leishmania (V) panamensis. Twelve compounds were active, with EC50 values lower than 40 µM, but only four compounds displayed the highest antileishmanial activity, with EC50 values below 10 µM; these all compounds possess a good Selectivity Index > 2.6. Although two active compounds were thiochromenes, a clear structure-activity relationship was not detected since each active compound has a different substitution pattern.


Assuntos
Antiprotozoários/farmacologia , Proliferação de Células/efeitos dos fármacos , Leishmania/efeitos dos fármacos , Piranos/farmacologia , Compostos de Sulfidrila/farmacologia , Animais , Antiprotozoários/síntese química , Antiprotozoários/química , Humanos , Leishmania/patogenicidade , Estrutura Molecular , Testes de Sensibilidade Parasitária , Piranos/síntese química , Piranos/química , Compostos de Sulfidrila/síntese química , Compostos de Sulfidrila/química
14.
Commun Nonlinear Sci Numer Simul ; 85: 105228, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32288422

RESUMO

Co-infections by multiple pathogens have important implications in many aspects of health, epidemiology and evolution. However, how to disentangle the non-linear dynamics of the immune response when two infections take place at the same time is largely unexplored. Using data sets of the immune response during influenza-pneumococcal co-infection in mice, we employ here topological data analysis to simplify and visualise high dimensional data sets. We identified persistent shapes of the simplicial complexes of the data in the three infection scenarios: single viral infection, single bacterial infection, and co-infection. The immune response was found to be distinct for each of the infection scenarios and we uncovered that the immune response during the co-infection has three phases and two transition points. During the first phase, its dynamics is inherited from its response to the primary (viral) infection. The immune response has an early shift (few hours post co-infection) and then modulates its response to react against the secondary (bacterial) infection. Between 18 and 26 h post co-infection the nature of the immune response changes again and does no longer resembles either of the single infection scenarios.

15.
Annu Rev Control ; 50: 448-456, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33020692

RESUMO

COVID-19 pandemic has underlined the impact of emergent pathogens as a major threat to human health. The development of quantitative approaches to advance comprehension of the current outbreak is urgently needed to tackle this severe disease. Considering different starting times of infection, mathematical models are proposed to represent SARS-CoV-2 dynamics in infected patients. Based on the target cell limited model, the within-host reproductive number for SARS-CoV-2 is consistent with the broad values of human influenza infection. The best model to fit the data was including immune cell response, which suggests a slow immune response peaking between 5 to 10 days post-onset of symptoms. The model with the eclipse phase, time in a latent phase before becoming productively infected cells, was not supported. Interestingly, model simulations predict that SARS-CoV-2 may replicate very slowly in the first days after infection, and viral load could be below detection levels during the first 4 days post infection. A quantitative comprehension of SARS-CoV-2 dynamics and the estimation of standard parameters of viral infections is the key contribution of this pioneering work. These models can serve for future evaluation of control theoretical approaches to tailor new drugs against COVID-19.

16.
Annu Rev Control ; 50: 457-468, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33041634

RESUMO

While many epidemiological models were proposed to understand and handle COVID-19 pandemic, too little has been invested to understand human viral replication and the potential use of novel antivirals to tackle the infection. In this work, using a control theoretical approach, validated mathematical models of SARS-CoV-2 in humans are characterized. A complete analysis of the main dynamic characteristic is developed based on the reproduction number. The equilibrium regions of the system are fully characterized, and the stability of such regions is formally established. Mathematical analysis highlights critical conditions to decrease monotonically SARS-CoV-2 in the host, as such conditions are relevant to tailor future antiviral treatments. Simulation results show the aforementioned system characterization.

17.
Environ Microbiol ; 21(8): 2921-2932, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31102315

RESUMO

Bacteria of the genera Photorhabdus and Xenorhabdus produce a plethora of natural products to support their similar symbiotic life cycles. For many of these compounds, the specific bioactivities are unknown. One common challenge in natural product research when trying to prioritize research efforts is the rediscovery of identical (or highly similar) compounds from different strains. Linking genome sequence to metabolite production can help in overcoming this problem. However, sequences are typically not available for entire collections of organisms. Here, we perform a comprehensive metabolic screening using HPLC-MS data associated with a 114-strain collection (58 Photorhabdus and 56 Xenorhabdus) across Thailand and explore the metabolic variation among the strains, matched with several abiotic factors. We utilize machine learning in order to rank the importance of individual metabolites in determining all given metadata. With this approach, we were able to prioritize metabolites in the context of natural product investigations, leading to the identification of previously unknown compounds. The top three highest ranking features were associated with Xenorhabdus and attributed to the same chemical entity, cyclo(tetrahydroxybutyrate). This work also addresses the need for prioritization in high-throughput metabolomic studies and demonstrates the viability of such an approach in future research.


Assuntos
Hidroxibutiratos/metabolismo , Photorhabdus/classificação , Xenorhabdus/classificação , Animais , Produtos Biológicos/metabolismo , Photorhabdus/genética , Photorhabdus/metabolismo , Filogenia , Simbiose , Tailândia , Xenorhabdus/genética , Xenorhabdus/metabolismo
18.
J Math Biol ; 77(4): 1035-1057, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29737396

RESUMO

Multiscale models possess the potential to uncover new insights into infectious diseases. Here, a rigorous stability analysis of a multiscale model within-host and between-host is presented. The within-host model describes viral replication and the respective immune response while disease transmission is represented by a susceptible-infected model. The bridging of scales from within- to between-host considered transmission as a function of the viral load. Consequently, stability and bifurcation analyses were developed coupling the two basic reproduction numbers [Formula: see text] and [Formula: see text] for the within- and the between-host subsystems, respectively. Local stability results for each subsystem, including a unique stable equilibrium point, recapitulate classical approaches to infection and epidemic control. Using a Lyapunov function, global stability of the between-host system was obtained. Our main result was the derivation of the [Formula: see text] as an increasing function of [Formula: see text]. Numerical analyses reveal that a Michaelis-Menten form based on the virus is more likely to recapitulate the behavior between the scales than a form directly proportional to the virus. Our work contributes basic understandings of the two models and casts light on the potential effects of the coupling function on linking the two scales.


Assuntos
Modelos Biológicos , Viroses/transmissão , Número Básico de Reprodução/estatística & dados numéricos , Simulação por Computador , Suscetibilidade a Doenças , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Conceitos Matemáticos , Linfócitos T/imunologia , Carga Viral/estatística & dados numéricos , Viroses/imunologia , Viroses/virologia
19.
BMC Public Health ; 18(1): 886, 2018 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-30016958

RESUMO

BACKGROUND: Recent epidemics have entailed global discussions on revamping epidemic control and prevention approaches. A general consensus is that all sources of data should be embraced to improve epidemic preparedness. As a disease transmission is inherently governed by individual-level responses, pathogen dynamics within infected hosts posit high potentials to inform population-level phenomena. We propose a multiscale approach showing that individual dynamics were able to reproduce population-level observations. METHODS: Using experimental data, we formulated mathematical models of pathogen infection dynamics from which we simulated mechanistically its transmission parameters. The models were then embedded in our implementation of an age-specific contact network that allows to express individual differences relevant to the transmission processes. This approach is illustrated with an example of Ebola virus (EBOV). RESULTS: The results showed that a within-host infection model can reproduce EBOV's transmission parameters obtained from population data. At the same time, population age-structure, contact distribution and patterns can be expressed using network generating algorithm. This framework opens a vast opportunity to investigate individual roles of factors involved in the epidemic processes. Estimating EBOV's reproduction number revealed a heterogeneous pattern among age-groups, prompting cautions on estimates unadjusted for contact pattern. Assessments of mass vaccination strategies showed that vaccination conducted in a time window from five months before to one week after the start of an epidemic appeared to strongly reduce epidemic size. Noticeably, compared to a non-intervention scenario, a low critical vaccination coverage of 33% cannot ensure epidemic extinction but could reduce the number of cases by ten to hundred times as well as lessen the case-fatality rate. CONCLUSIONS: Experimental data on the within-host infection have been able to capture upfront key transmission parameters of a pathogen; the applications of this approach will give us more time to prepare for potential epidemics. The population of interest in epidemic assessments could be modelled with an age-specific contact network without exhaustive amount of data. Further assessments and adaptations for different pathogens and scenarios to explore multilevel aspects in infectious diseases epidemics are underway.


Assuntos
Simulação por Computador , Busca de Comunicante/métodos , Epidemias/prevenção & controle , Infectologia/métodos , Modelos Teóricos , Algoritmos , Animais , Humanos , Fatores de Tempo , Vacinação/métodos
20.
Molecules ; 22(12)2017 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-29186046

RESUMO

The S-containing heterocyclic compounds benzothiopyrans or thiochromones stand out as having promising biological activities due to their structural relationship with chromones (benzopyrans), which are widely known as privileged scaffolds in medicinal chemistry. In this work, we report the synthesis of 35 thiochromone derivatives and the in vitro antileishmanial and cytotoxic activities. Compounds were tested against intracellular amastigotes of Leishmania panamensis and cytotoxic activity against human monocytes (U-937 ATCC CRL-1593.2). Compounds bearing a vinyl sulfone moiety, 4h, 4i, 4j, 4k, 4l and 4m, displayed the highest antileishmanial activity, with EC50 values lower than 10 µM and an index of selectivity over 100 for compounds 4j and 4l. When the double bond or the sulfone moiety was removed, the activity decreased. Our results show that thiochromones bearing a vinyl sulfone moiety are endowed with high antileishmanial activity and low cytotoxicity.


Assuntos
Antiprotozoários/síntese química , Antiprotozoários/farmacologia , Leishmania/efeitos dos fármacos , Tiamina/análogos & derivados , Antiprotozoários/química , Técnicas de Química Sintética , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Testes de Sensibilidade Parasitária , Relação Estrutura-Atividade , Tiamina/síntese química , Tiamina/química , Tiamina/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA