RESUMO
[1] Independent data from the Gulf of Mexico are used to develop and test the hypothesis that the same sequence of physical and ecological events each year allows the toxic dinoflagellate Karenia brevis to become dominant. A phosphorus-rich nutrient supply initiates phytoplankton succession, once deposition events of Saharan iron-rich dust allow Trichodesmium blooms to utilize ubiquitous dissolved nitrogen gas within otherwise nitrogen-poor sea water. They and the co-occurring K. brevis are positioned within the bottom Ekman layers, as a consequence of their similar diel vertical migration patterns on the middle shelf. Upon onshore upwelling of these near-bottom seed populations to CDOM-rich surface waters of coastal regions, light-inhibition of the small red tide of ~1 ug chl l(-1) of ichthytoxic K. brevis is alleviated. Thence, dead fish serve as a supplementary nutrient source, yielding large, self-shaded red tides of ~10 ug chl l(-1). The source of phosphorus is mainly of fossil origin off west Florida, where past nutrient additions from the eutrophied Lake Okeechobee had minimal impact. In contrast, the P-sources are of mainly anthropogenic origin off Texas, since both the nutrient loadings of Mississippi River and the spatial extent of the downstream red tides have increased over the last 100 years. During the past century and particularly within the last decade, previously cryptic Karenia spp. have caused toxic red tides in similar coastal habitats of other western boundary currents off Japan, China, New Zealand, Australia, and South Africa, downstream of the Gobi, Simpson, Great Western, and Kalahari Deserts, in a global response to both desertification and eutrophication.
RESUMO
Little is known of the factors shaping sediment bacterial communities, despite their high abundance and reports of high diversity. Two factors hypothesized to shape bacterial communities in the water column are nutrient (resource) availability and virus infection. The role these factors play in benthic bacterial diversity was assessed in oligotrophic carbonate-based sediments of Florida Bay (USA). Sediment-water mesocosm enclosures were made from 1-m diameter clear polycarbonate cylinders which were pushed into sediments to approximately 201 cm sediment depth enclosing approximately 80 L of water. Mesocosms were amended each day for 14 d with 10 microM NH4+ and 1 microM PO4(3-). In a second experiment, viruses from a benthic flocculent layer were concentrated and added back to flocculent layer samples which were collected near the mesocosm enclosures. Photosynthesis by microalgae in virus-amended incubations was monitored by pulse-amplitude modulated (PAM) fluorescence. In both experiments, bacterial diversity was estimated using automated rRNA intergenic spacer analysis (ARISA), a high-resolution fingerprinting approach. Initial sediment bacterial operational taxonomic unit (OTU) richness (236 +/- 3) was higher than in the water column (148 +/- 9), where an OTU was detectable when its amplified DNA represented >0.09% of the total amplified DNA. Effects on bacterial diversity and operational taxonomic unit (OTU) richness in nutrient-amended mesocosms may have been masked by the effects of containment, which stimulated OTU richness in the water column, but depressed OTU richness and diversity in sediments. Nutrient addition significantly elevated virus abundance and the ratio of viruses to bacteria (p < 0.05 for both) in the sediments, concomitant with elevated bacterial diversity. However, water column bacterial diversity (in unamended controls) was not affected by nutrient amendments, which may be due to rapid nutrient uptake by sediment organisms or adsorption of P to carbonate sediments. Addition of live viruses to benthic flocculent layer samples increased bacterial OTU diversity and richness compared with heat-killed controls; however, cluster analyses showed that the community structure in the virus-amended mesocosms varied greatly between replicates. Despite the strong effects upon eubacterial communities, photosynthesis of co-occurring protists and cyanobacteria was not significantly altered by the presence of virus concentrates. This study supports the hypothesis that nutrient availability plays a key role in shaping sediment bacterial communities, and also that viruses may regulate the abundance of the dominant competitors and allow less dominant organisms to maintain or increase their abundance in a community due to decreased competition for resources.