Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Cell ; 164(3): 433-46, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26824656

RESUMO

The phosphoinositide 3-kinase (PI3K) pathway regulates multiple steps in glucose metabolism and also cytoskeletal functions, such as cell movement and attachment. Here, we show that PI3K directly coordinates glycolysis with cytoskeletal dynamics in an AKT-independent manner. Growth factors or insulin stimulate the PI3K-dependent activation of Rac, leading to disruption of the actin cytoskeleton, release of filamentous actin-bound aldolase A, and an increase in aldolase activity. Consistently, PI3K inhibitors, but not AKT, SGK, or mTOR inhibitors, cause a significant decrease in glycolysis at the step catalyzed by aldolase, while activating PIK3CA mutations have the opposite effect. These results point toward a master regulatory function of PI3K that integrates an epithelial cell's metabolism and its form, shape, and function, coordinating glycolysis with the energy-intensive dynamics of actin remodeling.


Assuntos
Frutose-Bifosfato Aldolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Animais , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Citoesqueleto/metabolismo , Citosol/metabolismo , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Glicólise , Humanos , Insulina/metabolismo , Camundongos , Inibidores de Fosfoinositídeo-3 Quinase , Transdução de Sinais
2.
Breast Cancer Res ; 26(1): 109, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38956693

RESUMO

BACKGROUND: The effect of gender-affirming testosterone therapy (TT) on breast cancer risk is unclear. This study investigated the association between TT and breast tissue composition and breast tissue density in trans masculine individuals (TMIs). METHODS: Of the 444 TMIs who underwent chest-contouring surgeries between 2013 and 2019, breast tissue composition was assessed in 425 TMIs by the pathologists (categories of lobular atrophy and stromal composition) and using our automated deep-learning algorithm (% epithelium, % fibrous stroma, and % fat). Forty-two out of 444 TMIs had mammography prior to surgery and their breast tissue density was read by a radiologist. Mammography digital files, available for 25/42 TMIs, were analyzed using the LIBRA software to obtain percent density, absolute dense area, and absolute non-dense area. Linear regression was used to describe the associations between duration of TT use and breast tissue composition or breast tissue density measures, while adjusting for potential confounders. Analyses stratified by body mass index were also conducted. RESULTS: Longer duration of TT use was associated with increasing degrees of lobular atrophy (p < 0.001) but not fibrous content (p = 0.82). Every 6 months of TT was associated with decreasing amounts of epithelium (exp(ß) = 0.97, 95% CI 0.95,0.98, adj p = 0.005) and fibrous stroma (exp(ß) = 0.99, 95% CI 0.98,1.00, adj p = 0.05), but not fat (exp(ß) = 1.01, 95%CI 0.98,1.05, adj p = 0.39). The effect of TT on breast epithelium was attenuated in overweight/obese TMIs (exp(ß) = 0.98, 95% CI 0.95,1.01, adj p = 0.14). When comparing TT users versus non-users, TT users had 28% less epithelium (exp(ß) = 0.72, 95% CI 0.58,0.90, adj p = 0.003). There was no association between TT and radiologist's breast density assessment (p = 0.58) or LIBRA measurements (p > 0.05). CONCLUSIONS: TT decreases breast epithelium, but this effect is attenuated in overweight/obese TMIs. TT has the potential to affect the breast cancer risk of TMIs. Further studies are warranted to elucidate the effect of TT on breast density and breast cancer risk.


Assuntos
Densidade da Mama , Mama , Mamografia , Testosterona , Pessoas Transgênero , Humanos , Densidade da Mama/efeitos dos fármacos , Feminino , Adulto , Testosterona/uso terapêutico , Mamografia/métodos , Mama/diagnóstico por imagem , Mama/patologia , Masculino , Pessoa de Meia-Idade , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Neoplasias da Mama/diagnóstico por imagem , Índice de Massa Corporal , Procedimentos de Readequação Sexual/efeitos adversos , Procedimentos de Readequação Sexual/métodos
3.
Neuroimage ; 265: 119785, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36464096

RESUMO

BACKGROUND: To investigate the association of ihMT (inhom signals with the demyelination and remyelination phases of the acute cuprizone mouse model in comparison with histology, and to assess the extent of tissue damage and repair from MRI data. METHODS: Acute demyelination by feeding 0.2% cuprizone for five weeks, followed by a four-week remyelination period was applied on genetically modified plp-GFP mice. Animals were scanned at different time points of the demyelination and remyelination phases of the cuprizone model using a multimodal MRI protocol, including ihMT T1D-filters, MPF (Macromolecular Proton Fraction) and R1 (longitudinal relaxation rate). For histology, plp-GFP (proteolipid protein - Green Fluorescent Protein) microscopy and LFB (Luxol Fast Blue) staining were employed as references for the myelin content. Comparison of MRI with histology was performed in the medial corpus callosum (mCC) and cerebral cortex (CTX) at two brain levels whereas ROI-wise and voxel-based analyses of the MRI metrics allowed investigating in vivo the spatial extent of myelin alterations. RESULTS: IhMT high-pass T1D-filters, targeted toward long T1D components, showed significant temporal variations in the mCC consistent with the effects induced by the cuprizone toxin. In addition, the corresponding signals correlated strongly and significantly with the myelin content assessed by GFP fluorescence and LFB staining over the demyelination and the remyelination phases. The signal of the band-pass T1D-filter, which isolates short T1D components, showed changes over time that were poorly correlated with histology, hence suggesting a sensitivity to pathological processes possibly not related to myelin. Although MPF was also highly correlated to histology, ihMT high-pass T1D-filters showed better capability to characterize the spatial-temporal patterns during the demyelination and remyelination phases of the acute cuprizone model (e.g., rostro-caudal gradient of demyelination in the mCC previously described in the literature). CONCLUSIONS: IhMT sequences selective for long T1D components are specific and sensitive in vivo markers of demyelination and remyelination and have successfully captured the spatially heterogeneous pattern of the demyelination and remyelination mechanisms in the cuprizone model. Interestingly, differences in signal variations between the ihMT high-pass and band-pass T1D-filter, suggest a sensitivity of the ihMT sequences targeted to short T1Ds to alterations other than those of myelin. Future studies will need to further address these differences by examining more closely the origin of the short T1D components and the variation of each T1D component in pathology.


Assuntos
Doenças Desmielinizantes , Remielinização , Animais , Camundongos , Cuprizona/toxicidade , Doenças Desmielinizantes/induzido quimicamente , Doenças Desmielinizantes/diagnóstico por imagem , Doenças Desmielinizantes/metabolismo , Imageamento por Ressonância Magnética/métodos , Bainha de Mielina/metabolismo , Camundongos Endogâmicos C57BL , Modelos Animais de Doenças
4.
Magn Reson Med ; 89(2): 550-564, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36306334

RESUMO

PURPOSE: To evaluate the benefits of fast spin echo (FSE) imaging over rapid gradient-echo (RAGE) for magnetization-prepared inhomogeneous magnetization transfer (ihMT) imaging. METHODS: A 3D FSE sequence was modified to include an ihMT preparation (ihMT-FSE) with an optional CSF suppression based on an inversion-recovery (ihMT-FLAIR). After numeric simulations assessing SNR benefits of FSE and the potential impact of an additional inversion-recovery, ihMT-RAGE, ihMT-FSE, and ihMT-FLAIR sequences were compared in a group of six healthy volunteers, evaluating image quality, thermal, and physiological noise as well as quantification using an ihMT saturation (ihMTsat) approach. A preliminary exploration in the cervical spinal cord was also conducted in a group of three healthy volunteers. RESULTS: Several fold improvements in thermal SNR were observed with ihMT-FSE in agreement with numerical simulations. However, we observed significantly higher physiological noise in ihMT-FSE compared to ihMT-RAGE that was mitigated in ihMT-FLAIR, which provided the best total SNR (+74% and +49% compared to ihMT-RAGE in the white and gray matter, P ≤ 0.004). IhMTsat quantification was successful in all cases with strong correlation between all sequences (r2 > 0.75). Early experiments showed potential for spinal cord imaging. CONCLUSIONS: FSE generally offers higher SNR compared to gradient-echo based acquisitions for magnetization-prepared contrasts as illustrated here in the case of ihMT. However, physiological noise has a significant effect, but an inversion-recovery-based CSF suppression was shown to be efficient in mitigating effects of CSF motion.


Assuntos
Substância Cinzenta , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Substância Cinzenta/diagnóstico por imagem , Meios de Contraste , Medula Espinal/diagnóstico por imagem , Movimento (Física)
5.
Magn Reson Med ; 90(3): 875-893, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37154400

RESUMO

PURPOSE: To demonstrate the bias in quantitative MT (qMT) measures introduced by the presence of dipolar order and on-resonance saturation (ONRS) effects using magnetization transfer (MT) spoiled gradient-recalled (SPGR) acquisitions, and propose changes to the acquisition and analysis strategies to remove these biases. METHODS: The proposed framework consists of SPGR sequences prepared with simultaneous dual-offset frequency-saturation pulses to cancel out dipolar order and associated relaxation (T1D ) effects in Z-spectrum acquisitions, and a matched quantitative MT (qMT) mathematical model that includes ONRS effects of readout pulses. Variable flip angle and MT data were fitted jointly to simultaneously estimate qMT parameters (macromolecular proton fraction [MPF], T2,f , T2,b , R, and free pool T1 ). This framework is compared with standard qMT and investigated in terms of reproducibility, and then further developed to follow a joint single-point qMT methodology for combined estimation of MPF and T1 . RESULTS: Bland-Altman analyses demonstrated a systematic underestimation of MPF (-2.5% and -1.3%, on average, in white and gray matter, respectively) and overestimation of T1 (47.1 ms and 38.6 ms, on average, in white and gray matter, respectively) if both ONRS and dipolar order effects are ignored. Reproducibility of the proposed framework is excellent (ΔMPF = -0.03% and ΔT1 = -19.0 ms). The single-point methodology yielded consistent MPF and T1 values with respective maximum relative average bias of -0.15% and -3.5 ms found in white matter. CONCLUSION: The influence of acquisition strategy and matched mathematical model with regard to ONRS and dipolar order effects in qMT-SPGR frameworks has been investigated. The proposed framework holds promise for improved accuracy with reproducibility.


Assuntos
Imageamento por Ressonância Magnética , Substância Branca , Reprodutibilidade dos Testes , Imageamento por Ressonância Magnética/métodos , Substância Branca/diagnóstico por imagem , Substância Cinzenta , Modelos Teóricos , Prótons , Substâncias Macromoleculares , Encéfalo/diagnóstico por imagem
6.
NMR Biomed ; 36(6): e4808, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-35916067

RESUMO

Off-resonance radio frequency irradiation can induce the ordering of proton spins in the dipolar fields of their neighbors, in molecules with restricted mobility. This dipolar order decays with a characteristic relaxation time, T1D , that is very different from the T1 and T2 relaxation of the nuclear alignment with the main magnetic field. Inhomogeneous magnetization transfer (ihMT) imaging is a refinement of magnetization transfer (MT) imaging that isolates the MT signal dependence on dipolar order relaxation times within motion-constrained molecules. Because T1D relaxation is a unique contrast mechanism, ihMT may enable improved characterization of tissue. Initial work has stressed the high correlation between ihMT signal and myelin density. Dipolar order relaxation appears to be much longer in membrane lipids than other molecules. Recent work has shown, however, that ihMT acquisitions may also be adjusted to emphasize different ranges of T1D . These newer approaches may be sensitive to other microstructural components of tissue. Here, we review the concepts and history of ihMT and outline the requirements for further development to realize its full potential.


Assuntos
Imageamento por Ressonância Magnética , Bainha de Mielina , Imageamento por Ressonância Magnética/métodos , Bainha de Mielina/química , Lipídeos de Membrana , Campos Magnéticos , Movimento (Física)
7.
Magn Reson Med ; 87(3): 1346-1359, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34779020

RESUMO

PURPOSE: To minimize the sensitivity of inhomogeneous magnetization transfer gradient-echo (ihMT-GRE) imaging to radiofrequency (RF) transmit field ( B1+ ) inhomogeneities at 3 T. METHODS: The ihMT-GRE sequence was optimized by varying the concentration of the RF saturation energy over time, obtained by increasing the saturation pulse power while extending the sequence repetition time (TR). Different protocols were tested using numerical simulations and human in vivo experiments in the brain white matter (WM) of healthy subjects at 3 T. The sensitivity of the ihMT ratio (ihMTR) to B1+ variations was investigated by comparing measurements obtained at nominal transmitter adjustments and following a 20% global B1+ drop. The resulting relative variations (δihMTR ) were evaluated voxelwise as a function of the local B1+ distribution. The reproducibility of the protocol providing minimal B1+ bias was assessed in a test-retest experiment. RESULTS: In line with simulations, ihMT-GRE experiments conducted at high concentration of the RF energy over time demonstrated strong reduction of the B1+ inhomogeneity effects in the human WM. Under the optimal conditions of 350-ms TR and 3-µT root mean square (RMS) saturation power, 73% of all WM voxels presented δihMTR below 10%. Reproducibility analysis yielded a close-to-zero systematic bias (ΔihMTR = -0.081%) and a high correlation (ρ² = 0.977) between test and retest experiments. CONCLUSION: Concentrating RF saturation energy in ihMT-GRE sequences mitigates the sensitivity of the ihMTR to B1+ variations and allows for clinical-ready ihMT imaging at 3 T. This feature is of particular interest for high and ultra-high field applications.


Assuntos
Imageamento por Ressonância Magnética , Substância Branca , Encéfalo/diagnóstico por imagem , Voluntários Saudáveis , Humanos , Ondas de Rádio , Reprodutibilidade dos Testes
8.
Magn Reson Med ; 87(5): 2329-2346, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35001427

RESUMO

PURPOSE: To investigate the long- and short-T1D components correlation with myelin content using inhomogeneous magnetization transfer (ihMT) high-pass and band-pass T1D -filters and to compare ihMT, R1 , and the macromolecular proton fraction (MPF) for myelin specific imaging. METHODS: The 3D ihMT rapid gradient echo (ihMTRAGE) sequences with increasing switching times (Δt) were used to derive ihMT high-pass T1D -filters with increasing T1D cutoff values and an ihMT band-pass T1D -filter for components in the 100 µs to 1 ms range. 3D spoiled gradient echo quantitative MT (SPGR-qMT) protocols were used to derive R1 and MPF maps. The specificity of R1 , MPF, and ihMT T1D -filters was evaluated by comparison with two histological reference techniques for myelin imaging. RESULTS: The higher contribution of long-T1D s as compared to the short components as Δt got longer led to an increase in the specificity to myelination. In contrast, focusing on the signal originating from a narrow range of short-T1D s (< 1 ms) as isolated by the band-pass T1D -filter led to lower specificity. In addition, the significantly lower r2 correlation coefficient of the band-pass T1D -filter suggests that the origin of short-T1D components is mostly associated with non-myelin protons. Also, the important contribution of short-T1D s to the estimated MPF, explains its low specificity to myelination as compared to the ihMT high-pass T1D -filters. CONCLUSION: Long-T1D components imaging by means of ihMT high-pass T1D -filters is proposed as an MRI biomarker for myelin content. Future studies should enable the investigation of the sensitivity of ihMT T1D -filters for demyelinating processes.


Assuntos
Bainha de Mielina , Substância Branca , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Prótons
9.
Magn Reson Med ; 87(5): 2313-2328, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35037302

RESUMO

PURPOSE: To identify T1D -filtering methods, which can specifically isolate various ranges of T1D components as they may be sensitive to different microstructural properties. METHODS: Modified Bloch-Provotorov equations describing a bi-T1D component biophysical model were used to simulate the inhomogeneous magnetization transfer (ihMT) signal from ihMTRAGE sequences at high RF power and low duty-cycle with different switching time values for the dual saturation experiment: Δt = 0.0, 0.8, 1.6, and 3.2 ms. Simulations were compared with experimental signals on the brain gray and white matter tissues of healthy mice at 7T. RESULTS: The lengthening of Δt created ihMT high-pass T1D -filters, which efficiently eliminated the signal from T1D components shorter than 1 ms, while partially attenuating that of longer components (≥ 1 ms). Subtraction of ihMTR images obtained with Δt = 0.0 ms and Δt = 0.8 ms generated a new ihMT band-pass T1D -filter isolating short-T1D components in the 100-µs to 1-ms range. Simulated ihMTR values in central nervous system tissues were confirmed experimentally. CONCLUSION: Long- and short-T1D components were successfully isolated with high RF power and low duty-cycle ihMT filters in the healthy mouse brain. Future studies should investigate the various T1D -range microstructural correlations in in vivo tissues.


Assuntos
Processamento de Imagem Assistida por Computador , Substância Branca , Animais , Encéfalo/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Camundongos , Bainha de Mielina/química , Substância Branca/diagnóstico por imagem
10.
Neuroimage ; 225: 117442, 2021 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-33039620

RESUMO

BACKGROUND: Myelin specific imaging techniques to characterize white matter in demyelinating diseases such as multiple sclerosis (MS) have become an area of increasing focus. Gray matter myelination is an important marker of cortical microstructure, and its impairment is relevant in progressive MS. However, its assessment is challenging due to its thin layers. While myelin water imaging and ultra-short TE imaging have not yet been implemented to assess cortical myeloarchitecture, magnetization transfer (MT) shows promise. A recent development of the MT technique, ihMT, has demonstrated greater myelin sensitivity/specificity. Here we implemented a 3D ihMT acquisition and analysis to characterize cortical gray matter myeloarchitecture. METHODS: 20 young healthy volunteers were imaged with a 3D ihMTRAGE sequence and quantitative metrics of ihMT (ihMTsat), and dual frequency-offset MT (dual MTsat) were calculated. Cortical surface-based analysis of ihMTsat and dual MTsat were performed and compared. We also compared the cortical ihMTsat map to a cortical surface-based map of T1-weighted images (T1w), defined as a proxy of myelin content. RESULTS: Cortical ihMTsat and dual MTsat maps were in qualitative agreement with previous work and the cortical T1w map, showing higher values in primary cortices and lower values in the insula. IhMTsat and dual MTsat were significantly correlated but with important regional differences. The ratio ihMTsat/dual MTsat highlighted higher ihMTsat values in the primary cortices and sulci. CONCLUSION: ihMTsat, a quantitative metric of ihMT, can be reliably measured in cortical gray matter and shows unique contrast between cortical regions.


Assuntos
Córtex Cerebral/diagnóstico por imagem , Substância Cinzenta/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Bainha de Mielina , Adulto , Encéfalo/diagnóstico por imagem , Feminino , Voluntários Saudáveis , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Substância Branca/diagnóstico por imagem , Adulto Jovem
11.
Magn Reson Med ; 85(4): 2136-2144, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33107146

RESUMO

PURPOSE: The recently introduced inhomogeneous magnetization transfer (ihMT) method has predominantly been applied for imaging the central nervous system. Future applications of ihMT, such as in peripheral nerves and muscles, will involve imaging in the vicinity of adipose tissues. This work aims to systematically investigate the partial volume effect of fat on the ihMT signal and to propose an efficient fat-separation method that does not interfere with ihMT measurements. METHODS: First, the influence of fat on ihMT signal was studied using simulations. Next, the ihMT sequence was combined with a multi-echo Dixon acquisition for fat separation. The sequence was tested in 9 healthy volunteers using a 3T human scanner. The ihMT ratio (ihMTR) values were calculated in regions of interest in the brain and the spinal cord using standard acquisition (no fat saturation), water-only, in-phase, and out-of-phase reconstructions. The values obtained were compared with a standard fat suppression method, spectral presaturation with inversion recovery. RESULTS: Simulations showed variations in the ihMTR values in the presence of fat, depending on the TEs used. The IhMTR values in the brain and spinal cord derived from the water-only ihMT multi-echo Dixon images were in good agreement with values from the unsuppressed sequence. The ihMT-spectral presaturation with inversion recovery combination resulted in 24%-35% lower ihMTR values compared with the standard non-fat-suppressed acquisition. CONCLUSION: The presence of fat within a voxel affects the ihMTR calculations. The IhMT multi-echo Dixon method does not compromise the observable ihMT effect and can potentially be used to remove fat influence in ihMT.


Assuntos
Encéfalo , Imageamento por Ressonância Magnética , Tecido Adiposo/diagnóstico por imagem , Encéfalo/diagnóstico por imagem , Voluntários Saudáveis , Humanos , Medula Espinal
12.
NMR Biomed ; 34(8): e4560, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34086382

RESUMO

In many tumors, cancer cells take up large quantities of glucose and metabolize it into lactate, even in the presence of sufficient oxygen to support oxidative metabolism. It has been hypothesized that this malignant metabolic phenotype supports cancer growth and metastasis, and that reversal of this so-called "Warburg effect" may selectively harm cancer cells. Conversion of glucose to lactate can be reduced by ablation or inhibition of lactate dehydrogenase (LDH), the enzyme responsible for conversion of pyruvate to lactate at the endpoint of glycolysis. Recently developed inhibitors of LDH provide new opportunities to investigate the role of this metabolic pathway in cancer. Here we show that magnetic resonance spectroscopic imaging of hyperpolarized pyruvate and its metabolites in models of breast and lung cancer reveal that inhibition of LDH was readily visualized through reduction in label exchange between pyruvate and lactate, while genetic ablation of the LDH-A isoform alone had smaller effects. During the acute phase of LDH inhibition in breast cancer, no discernible bicarbonate signal was observed and small signals from alanine were unchanged.


Assuntos
Neoplasias da Mama/enzimologia , Deleção de Genes , Lactato Desidrogenase 5/antagonistas & inibidores , Lactato Desidrogenase 5/genética , Neoplasias Pulmonares/enzimologia , Espectroscopia de Ressonância Magnética , Ácido Pirúvico/metabolismo , Animais , Proteína BRCA1/metabolismo , Neoplasias da Mama/diagnóstico por imagem , Feminino , Lactato Desidrogenase 5/metabolismo , Neoplasias Pulmonares/diagnóstico por imagem , Camundongos , Transportadores de Ácidos Monocarboxílicos/metabolismo , Proteínas Musculares/metabolismo , Piridonas/administração & dosagem , Piridonas/farmacologia , Simportadores/metabolismo , Tiofenos/administração & dosagem , Tiofenos/farmacologia
13.
Magn Reson Med ; 84(6): 2964-2980, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32602958

RESUMO

PURPOSE: To demonstrate the feasibility of integrating the magnetization transfer (MT) preparations required for inhomogeneous MT (ihMT) within an MPRAGE-style acquisition. Such a sequence allows for reduced power deposition and easy inclusion of other modules. METHODS: An ihMT MPRAGE-style sequence (ihMTRAGE) was initially simulated to investigate acquisition of the 3D ihMT data sequentially, or in an interleaved manner. The ihMTRAGE sequence was implemented on a 3T clinical scanner to acquire ihMT data from the brain and spine. RESULTS: Both simulations and in vivo data provided an ihMT signal that was significantly greater using a sequential ihMTRAGE acquisition, compared with an interleaved implementation. Comparison with a steady-state ihMT acquisition (defined as having one MT RF pulse between successive acquisition modules) demonstrated how ihMTRAGE allows for a reduction in average power deposition, or greater ihMT signal at equal average power deposition. Inclusion of a prospective motion-correction module did not significantly affect the ihMT signal obtained from regions of interest in the brain. The ihMTRAGE acquisition allowed combination with a spatial saturation module to reduce phase wrap artifacts in a cervical spinal cord acquisition. CONCLUSIONS: Use of preparations necessary for ihMT experiments within an MPRAGE-style sequence provides a useful alternative for acquiring 3D ihMT data. Compared with our steady-state implementation, ihMTRAGE provided reduced power deposition, while allowing use of the maximum intensity from off-resonance RF pulses. The 3D ihMTRAGE acquisition allowed combination of other modules with the preparation necessary for ihMT experiments, specifically motion compensation and spatial saturation modules.


Assuntos
Processamento de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Artefatos , Encéfalo/diagnóstico por imagem , Imageamento Tridimensional , Estudos Prospectivos
14.
Neuroimage ; 182: 343-350, 2018 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-28916179

RESUMO

Sensitive and specific biomarkers of myelin can help define baseline brain health and development, identify and monitor disease pathology, and evaluate response to treatment where myelin content is affected. Diffusion measures such as radial diffusivity (RD) are commonly used to assess myelin content, but are not specific to myelin. Inhomogeneous magnetization transfer (ihMT) and multicomponent driven equilibrium single-pulse observation of T1 and T2 (mcDESPOT) offer quantitative parameters (qihMT and myelin volume fraction/VFm, respectively) which are suggested to have improved sensitivity to myelin. We compared RD, qihMT, and VFm in a cohort of 23 healthy children aged 8-13 years to evaluate the similarities and differences across these measures. All 3 measures were significantly related across brain voxels, but VFm and qihMT were significantly more strongly correlated (qihMT-VFm r = 0.89) than either measure was with RD (RD-qihMT r = -0.66, RD-VFm r = -0.74; all p < 0.001). Mean parameters differed in several regions, especially in subcortical gray matter. These differences can likely be explained by unique sensitivities of each measure to non-myelin factors, such as crossing fiber geometry, axonal packing, fiber orientation, glial density, or magnetization transfer effects in a voxel. We also observed an orientation dependence of qihMT in white matter, such that qihMT decreased as fiber orientation went from parallel to perpendicular to B0. All measures appear to be sensitive to myelin content, though qihMT and VFm appear to be more specific to it than RD. Scan time, noise tolerance, and resolution requirements may inform researchers of the appropriate measure to choose for a specific application.


Assuntos
Desenvolvimento Infantil , Imagem de Tensor de Difusão/métodos , Substância Cinzenta/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Bainha de Mielina , Substância Branca/diagnóstico por imagem , Adolescente , Fatores Etários , Criança , Feminino , Humanos , Masculino
15.
Magn Reson Med ; 79(5): 2607-2619, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-28940355

RESUMO

PURPOSE: To implement, characterize, and optimize an interleaved inhomogeneous magnetization transfer (ihMT) gradient echo sequence allowing for whole-brain imaging within a clinically compatible scan time. THEORY AND METHODS: A general framework for ihMT modelling was developed based on the Provotorov theory of radiofrequency saturation, which accounts for the dipolar order underpinning the ihMT effect. Experimental studies and numerical simulations were performed to characterize and optimize the ihMT-gradient echo dependency with sequence timings, saturation power, and offset frequency. The protocol was optimized in terms of maximum signal intensity and the reproducibility assessed for a nominal resolution of 1.5 mm isotropic. All experiments were performed on healthy volunteers at 1.5T. RESULTS: An important mechanism driving signal optimization and leading to strong ihMT signal enhancement that relies on the dynamics of radiofrequency energy deposition has been identified. By taking advantage of the delay allowed for readout between ihMT pulse bursts, it was possible to boost the ihMT signal by almost 2-fold compared to previous implementation. Reproducibility of the optimal protocol was very good, with an intra-individual error < 2%. CONCLUSION: The proposed sensitivity-boosted and time-efficient steady-state ihMT-gradient echo sequence, implemented and optimized at 1.5T, allowed robust high-resolution 3D ihMT imaging of the whole brain within a clinically compatible scan time. Magn Reson Med 79:2607-2619, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Assuntos
Encéfalo/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Adulto , Simulação por Computador , Feminino , Análise de Fourier , Humanos , Masculino , Adulto Jovem
16.
Magn Reson Med ; 80(6): 2402-2414, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29707813

RESUMO

PURPOSE: To compare the recently introduced inhomogeneous magnetization transfer (ihMT) technique with more established MRI techniques including myelin water imaging (MWI) and diffusion tensor imaging (DTI), and to evaluate the microstructural attributes correlating with this new contrast method in the human brain white matter. METHODS: Eight adult healthy volunteers underwent T1 -weighted, ihMT, MWI, and DTI imaging on a 3T human scanner. The ihMT ratio (ihMTR), myelin water fraction (MWF), fractional anisotropy (FA), radial diffusivity (RD), axial diffusivity (AD), and mean diffusivity (MD) values were calculated from different white matter tracts. The angle ( θ ) between the directions of the principal eigenvector, as measured by DTI, and the main magnetic field was calculated for all voxels from various fiber tracts. The ihMTR was correlated with MWF and DTI metrics. RESULTS: A strong correlation was found between ihMTR and MWF (ρ = 0.77, P < 0.0001). This was followed by moderate to weak correlations between ihMTR and DTI metrics: RD (ρ = -0.30, P < 0.0001), FA (ρ = 0.20, P < 0.0001), MD (ρ = -0.19, P < 0.0001), AD (ρ = 0.02, P < 0.0001). A strong correlation was found between ihMTR and θ (ρ = -0.541, P < 0.0001). CONCLUSION: The strong correlation with myelin water imaging and its low coefficient of variation suggest that ihMT has the potential to become a new structural imaging marker of myelin. The substantial orientational dependence of ihMT should be taken into account when evaluating and quantitatively interpreting ihMT results.


Assuntos
Encéfalo/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética , Imageamento Tridimensional/métodos , Bainha de Mielina/química , Substância Branca/diagnóstico por imagem , Adulto , Anisotropia , Mapeamento Encefálico/métodos , Simulação por Computador , Imagem de Tensor de Difusão , Feminino , Voluntários Saudáveis , Humanos , Processamento de Imagem Assistida por Computador , Magnetismo , Masculino , Reconhecimento Automatizado de Padrão , Software , Água , Adulto Jovem
17.
Magn Reson Med ; 78(4): 1362-1372, 2017 10.
Artigo em Inglês | MEDLINE | ID: mdl-27859618

RESUMO

PURPOSE: This paper describes a technique that can be used in vivo to measure the dipolar relaxation time, T1D , of macromolecular protons contributing to magnetization transfer (MT) in tissues and to produce quantitative T1D maps. THEORY AND METHODS: The technique builds upon the inhomogeneous MT (ihMT) technique that is particularly sensitive to tissue components with long T1D . A standard ihMT experiment was altered to introduce a variable time for switching between positive and negative offset frequencies for RF saturation. A model for the dependence of ihMT was developed and used to fit data acquired in vivo. RESULTS: Application of the method to images from brains of healthy volunteers produced values of T1D = (5.9 ± 1.2) ms in gray matter and T1D = (6.2 ± 0.4) ms in white matter regions and provided maps of the T1D parameter. CONCLUSION: The model and experiments described provide access to a new relaxation characteristic of tissue with potentially unique diagnostic information. Magn Reson Med 78:1362-1372, 2017. © 2016 International Society for Magnetic Resonance in Medicine.


Assuntos
Mapeamento Encefálico/métodos , Substância Cinzenta/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Adulto , Humanos , Bainha de Mielina/química , Imagens de Fantasmas , Adulto Jovem
18.
Magn Reson Med ; 77(2): 581-591, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-26959278

RESUMO

PURPOSE: Inhomogeneous magnetization transfer (ihMT) shows great promise for specific imaging of myelinated tissues. Whereas the ihMT technique has been previously applied in brain applications, the current report presents a strategy for cervical spinal cord (SC) imaging free of cerebrospinal fluid (CSF) pulsatility artifacts. METHODS: A pulsed ihMT preparation was combined with a single-shot HASTE readout. Electrocardiogram (ECG) synchronization was used to acquire all images during the quiescent phase of SC motion. However ihMT signal quantification errors may occur when a variable recovery delay is introduced in the sequence as a consequence of variable cardiac cycle. A semiautomatic retrospective correction algorithm, based on repetition time (TR) -matching, is proposed to correct for signal variations of long T1 -components (e.g., CSF). RESULTS: The proposed strategy combining ECG synchronization and retrospective data pairing led to clean SC images free of CSF artifacts. Lower variability of the ihMT metrics were obtained with the correction algorithm, and allowed for shorter TR to be used, hence improving signal-to-noise ratio efficiency. CONCLUSION: The proposed methodology enabled faster acquisitions, while offering robust ihMT quantification and exquisite SC image quality. This opens great perspectives for widening the in vivo characterization of SC physiopathology using MRI, such as studying white matter tracts microstructure or impairment in degenerative pathologies. Magn Reson Med 77:581-591, 2017. © 2016 International Society for Magnetic Resonance in Medicine.


Assuntos
Algoritmos , Artefatos , Técnicas de Imagem de Sincronização Cardíaca/métodos , Líquido Cefalorraquidiano/citologia , Aumento da Imagem/métodos , Imageamento por Ressonância Magnética/métodos , Medula Espinal/anatomia & histologia , Adulto , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Masculino , Movimento (Física) , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
19.
Magn Reson Med ; 76(4): 1102-15, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26507361

RESUMO

PURPOSE: In balanced steady state free precession (bSSFP), the signal intensity has a well-known dependence on the off-resonance frequency, or, equivalently, the phase advance between successive radiofrequency (RF) pulses. The signal profile can be used to resolve the contributions from the spectrally separated metabolites. This work describes a method based on use of a variable RF phase advance to acquire spatial and spectral data in a time-efficient manner for hyperpolarized 13C MRI. THEORY AND METHODS: The technique relies on the frequency response from a bSSFP acquisition to acquire relatively rapid, high-resolution images that may be reconstructed to separate contributions from different metabolites. The ability to produce images from spectrally separated metabolites was demonstrated in vitro, as well as in vivo following administration of hyperpolarized 1-13C pyruvate in mice with xenograft tumors. RESULTS: In vivo images of pyruvate, alanine, pyruvate hydrate, and lactate were reconstructed from four images acquired in 2 s with an in-plane resolution of 1.25 × 1.25 mm(2) and 5 mm slice thickness. CONCLUSION: The phase advance method allowed acquisition of spectroscopically selective images with high spatial and temporal resolution. This method provides an alternative approach to hyperpolarized 13C spectroscopic MRI that can be combined with other techniques such as multiecho or fluctuating equilibrium bSSFP. Magn Reson Med 76:1102-1115, 2016. © 2015 Wiley Periodicals, Inc.


Assuntos
Alanina/metabolismo , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13/métodos , Ácido Láctico/metabolismo , Imageamento por Ressonância Magnética/métodos , Neoplasias Experimentais/metabolismo , Ácido Pirúvico/metabolismo , Processamento de Sinais Assistido por Computador , Células A549 , Algoritmos , Animais , Biomarcadores Tumorais/metabolismo , Isótopos de Carbono/farmacocinética , Linhagem Celular Tumoral , Humanos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Camundongos , Camundongos Nus , Imagem Molecular/métodos , Neoplasias Experimentais/patologia , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
20.
MAGMA ; 29(4): 699-709, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26762244

RESUMO

OBJECTIVES: The recently reported inhomogeneous magnetization transfer technique (ihMT) has been proposed for specific imaging of inhomogeneously broadened lines, and has shown great promise for characterizing myelinated tissues. The ihMT contrast is obtained by subtracting magnetization transfer images obtained with simultaneous saturation at positive and negative frequency offsets (dual frequency saturation experiment, MT (+/-)) from those obtained with single frequency saturation (MT (+)) at the same total power. Hence, ihMT may be biased by MT-asymmetry, especially at ultra-high magnetic field. Use of the average of single positive and negative frequency offset saturation MT images, i.e., (MT (+)+MT (-)) has been proposed to correct the ihMT signal from MT-asymmetry signal. MATERIALS AND METHODS: The efficiency of this correction method was experimentally assessed in this study, performed at 11.75 T on mice. Quantitative corrected ihMT and MT-asymmetry ratios (ihMTR and MTRasym) were measured in mouse brain structures for several MT-asymmetry magnitudes and different saturation parameter sets. RESULTS: Our results indicated a "safe" range of magnitudes (/MTRasym/<4 %) for which MT-asymmetry signal did not bias the corrected ihMT signal. Moreover, experimental evidence of the different natures of both MT-asymmetry and inhomogeneous MT contrasts were provided. In particular, non-zero ihMT ratios were obtained at zero MTRasym values. CONCLUSION: MTRasym is not a confounding factor for ihMT quantification, even at ultra-high field, as long as MTRasym is restricted to ±4 %.


Assuntos
Campos Magnéticos , Imageamento por Ressonância Magnética , Magnetismo , Bainha de Mielina/química , Algoritmos , Animais , Encéfalo/diagnóstico por imagem , Feminino , Aumento da Imagem/métodos , Processamento de Imagem Assistida por Computador/métodos , Camundongos , Camundongos Endogâmicos C57BL
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA