Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Plant J ; 117(1): 53-71, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37738381

RESUMO

Seed color is one of the key target traits of domestication and artificial selection in chickpeas due to its implications on consumer preference and market value. The complex seed color trait has been well dissected in several crop species; however, the genetic mechanism underlying seed color variation in chickpea remains poorly understood. Here, we employed an integrated genomics strategy involving QTL mapping, high-density mapping, map-based cloning, association analysis, and molecular haplotyping in an inter-specific RIL mapping population, association panel, wild accessions, and introgression lines (ILs) of Cicer gene pool. This delineated a MATE gene, CaMATE23, encoding a Transparent Testa (TT) and its natural allele (8-bp insertion) and haplotype underlying a major QTL governing seed color on chickpea chromosome 4. Signatures of selective sweep and a strong purifying selection reflected that CaMATE23, especially its 8-bp insertion natural allelic variant, underwent selection during chickpea domestication. Functional investigations revealed that the 8-bp insertion containing the third cis-regulatory RY-motif element in the CaMATE23 promoter is critical for enhanced binding of CaFUSCA3 transcription factor, a key regulator of seed development and flavonoid biosynthesis, thereby affecting CaMATE23 expression and proanthocyanidin (PA) accumulation in the seed coat to impart varied seed color in chickpea. Consequently, overexpression of CaMATE23 in Arabidopsis tt12 mutant partially restored the seed color phenotype to brown pigmentation, ascertaining its functional role in PA accumulation in the seed coat. These findings shed new light on the seed color regulation and evolutionary history, and highlight the transcriptional regulation of CaMATE23 by CaFUSCA3 in modulating seed color in chickpea. The functionally relevant InDel variation, natural allele, and haplotype from CaMATE23 are vital for translational genomic research, including marker-assisted breeding, for developing chickpea cultivars with desirable seed color that appeal to consumers and meet global market demand.


Assuntos
Cicer , Cicer/metabolismo , Locos de Características Quantitativas/genética , Alelos , Domesticação , Polimorfismo de Nucleotídeo Único , Melhoramento Vegetal , Sementes/genética
2.
Plant Physiol ; 191(3): 1884-1912, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36477336

RESUMO

Identifying potential molecular tags for drought tolerance is essential for achieving higher crop productivity under drought stress. We employed an integrated genomics-assisted breeding and functional genomics strategy involving association mapping, fine mapping, map-based cloning, molecular haplotyping and transcript profiling in the introgression lines (ILs)- and near isogenic lines (NILs)-based association panel and mapping population of chickpea (Cicer arietinum). This combinatorial approach delineated a bHLH (basic helix-loop-helix) transcription factor, CabHLH10 (Cicer arietinum bHLH10) underlying a major QTL, along with its derived natural alleles/haplotypes governing yield traits under drought stress in chickpea. CabHLH10 binds to a cis-regulatory G-box promoter element to modulate the expression of RD22 (responsive to desiccation 22), a drought/abscisic acid (ABA)-responsive gene (via a trans-expression QTL), and two strong yield-enhancement photosynthetic efficiency (PE) genes. This, in turn, upregulates other downstream drought-responsive and ABA signaling genes, as well as yield-enhancing PE genes, thus increasing plant adaptation to drought with reduced yield penalty. We showed that a superior allele of CabHLH10 introgressed into the NILs improved root and shoot biomass and PE, thereby enhancing yield and productivity during drought without compromising agronomic performance. Furthermore, overexpression of CabHLH10 in chickpea and Arabidopsis (Arabidopsis thaliana) conferred enhanced drought tolerance by improving root and shoot agro-morphological traits. These findings facilitate translational genomics for crop improvement and the development of genetically tailored, climate-resilient, high-yielding chickpea cultivars.


Assuntos
Cicer , Locos de Características Quantitativas , Locos de Características Quantitativas/genética , Alelos , Cicer/genética , Cicer/metabolismo , Ácido Abscísico/metabolismo , Resistência à Seca , Melhoramento Vegetal , Secas , Estresse Fisiológico/genética
3.
Mol Biol Rep ; 49(3): 2519-2530, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35031925

RESUMO

INTRODUCTION: Many pathogens have coexisted with humans for millennia and can cause chronic inflammation which is the cause of gastritis. Gastric cancer (GC) is associated with 8.8% of cancer related deaths, making it one of the leading causes of cancer related deaths worldwide. This review is intended to give brief information about Helicobacter pylori (H. pylori), Epstein-Barr virus (EBV), human cytomegalovirus (HCMV) role in GC and associated kinases. These organisms can trigger multiple cellular pathways aiming for unnatural cellular proliferation, apoptosis, migration and inflammatory response. Kinases also can activate and deactivate the signalling leading to aforementioned pathways. Therefore, studying kinases is inevitable. MATERIAL AND METHODS: This review is the comprehensive collection of information from different data sources such as journals, book, book chapters and verified online information. CONCLUSION: Kinase amplifications could be used as diagnostic, prognostic, and predictive biomarkers in various cancer types. Hence targeting kinase and related signalling molecules could be considered as a potential approach to prevent cancer through these organisms. Here we summarize the brief information about the role of kinases, signalling and their therapeutics in GC concerning H. pylori, EBV and HCMV.


Assuntos
Infecções por Vírus Epstein-Barr , Infecções por Helicobacter , Helicobacter pylori , Neoplasias Gástricas , Infecções por Helicobacter/complicações , Herpesvirus Humano 4 , Humanos , Neoplasias Gástricas/complicações , Neoplasias Gástricas/terapia
5.
Adv Protein Chem Struct Biol ; 140: 199-248, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38762270

RESUMO

The human gut microbiota is a complex and dynamic community of microorganisms, that influence metabolic, neurodevelopmental, and immune pathways. Microbial dysbiosis, characterized by changes in microbial diversity and relative abundances, is implicated in the development of various chronic neurological and neurodegenerative disorders. These disorders are marked by the accumulation of pathological protein aggregates, leading to the progressive loss of neurons and behavioural functions. Dysregulations in protein-protein interaction networks and signalling complexes, critical for normal brain function, are common in neurological disorders but challenging to unravel, particularly at the neuron and synapse-specific levels. To advance therapeutic strategies, a deeper understanding of neuropathogenesis, especially during the progressive disease phase, is needed. Biomarkers play a crucial role in identifying disease pathophysiology and monitoring disease progression. Proteomics, a powerful technology, shows promise in accelerating biomarker discovery and aiding in the development of novel treatments. In this chapter, we provide an in-depth overview of how proteomic techniques, utilizing various biofluid samples from patients with neurological conditions and diverse animal models, have contributed valuable insights into the pathogenesis of numerous neurological disorders. We also discuss the current state of research, potential challenges, and future directions in proteomic approaches to unravel neuro-pathological conditions.


Assuntos
Disbiose , Microbioma Gastrointestinal , Proteômica , Humanos , Disbiose/metabolismo , Disbiose/microbiologia , Doenças do Sistema Nervoso/metabolismo , Doenças do Sistema Nervoso/microbiologia , Animais , Eixo Encéfalo-Intestino , Biomarcadores/metabolismo
6.
Environ Pollut ; 347: 123676, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38442821

RESUMO

Organochlorine (OC) and organophosphorus (OP) pesticides such as chlorpyrifos (CPF) and endosulfan (ES) have been associated with a plethora of adverse health effects. Helicobacter pylori (H. pylori) infection can lead to gastrointestinal diseases by regulating several cellular processes. Thus, the current study focuses on the effect of the co-exposure to pesticides and H. pylori on gastric epithelial cells. We have used the in-silico approach to determine the interactive potential of pesticides and their metabolites with H. pylori-associated proteins. Further, various in-vitro methods depict the potential of ES in enhancing the virulence of H. pylori. Our results showed that ES along with H. pylori affects the mitochondrial dynamics, increases the transcript expression of mitochondrial fission genes, and lowers the mitochondrial membrane potential and biomass. They also promote inflammation and lower oxidative stress as predicted by ROS levels. Furthermore, co-exposure induces the multi-nucleated cells in gastric epithelial cells. In addition, ES along with H. pylori infection follows the extrinsic pathway for apoptotic signaling. H. pylori leads to the NF-κB activation which in turn advances the ß-catenin expression. The expression was further enhanced in the co-exposure condition and even more prominent in co-exposure with ES-conditioned media. Thus, our study demonstrated that pesticide and their metabolites enhance the pathogenicity of H. pylori infection.


Assuntos
Clorpirifos , Helicobacter pylori , Praguicidas , Helicobacter pylori/genética , Mucosa Gástrica/metabolismo , Clorpirifos/toxicidade , Clorpirifos/metabolismo , Virulência , Endossulfano/toxicidade , Células Epiteliais , Praguicidas/metabolismo
7.
Virulence ; 15(1): 2303853, 2024 12.
Artigo em Inglês | MEDLINE | ID: mdl-38197252

RESUMO

Helicobacter pylori is a pathogenic bacterium that causes gastritis and gastric carcinoma. Besides gastric complications its potential link with gut-brain axis disruption and neurological disorders has also been reported. The current study investigated the plausible role and its associated molecular mechanism underlying H. pylori mediated gut-brain axis disruption and neuroinflammation leading to neurological modalities like Alzheimer's disease (AD). We have chosen the antimicrobial resistant and susceptible H. pylori strains on the basis of broth dilution method. We have observed the increased inflammatory response exerted by H. pylori strains in the gastric as well as in the neuronal compartment after treatment with Helicobacter pylori derived condition media (HPCM). Further, elevated expression of STAT1, STAT3, and AD-associated proteins- APP and APOE4 was monitored in HPCM-treated neuronal and neuron-astrocyte co-cultured cells. Excessive ROS generation has been found in these cells. The HPCM treatment to LN229 causes astrogliosis, evidenced by increased glial fibrillary acidic protein. Our results indicate the association of STAT3 as an important regulator in the H. pylori-mediated pathogenesis in neuronal cells. Notably, the inhibition of STAT3 by its specific inhibitor, BP-1-102, reduced the expression of pSTAT3 and AD markers in neuronal compartment induced by HPCM. Thus, our study demonstrates that H. pylori infection exacerbates inflammation in AGS cells and modulates the activity of STAT3 regulatory molecules. H. pylori secretome could affect neurological compartments by promoting STAT3 activation and inducing the expression of AD-associated signature markers. Further, pSTAT-3 inhibition mitigates the H. pylori associated neuroinflammation and amyloid pathology.


Assuntos
Doença de Alzheimer , Helicobacter pylori , Humanos , Doenças Neuroinflamatórias , Eixo Encéfalo-Intestino , Secretoma , Inflamação/microbiologia , Fator de Transcrição STAT3/metabolismo
8.
Virology ; 588: 109901, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37839162

RESUMO

Aurora kinase A (AURKA) is one of the crucial cell cycle regulators associated with gastric cancer. Here, we explored Epstein Barr Virus-induced gastric cancer progression through EBV protein EBNA1 with AURKA. We found that EBV infection enhanced cell proliferation and migration of AGS cells and upregulation of AURKA levels. AURKA knockdown markedly reduced the proliferation and migration of the AGS cells even with EBV infection. Moreover, MD-simulation data deciphered the probable connection between EBNA1 and AURKA. The in-vitro analysis through the transcript and protein expression showed that AURKA knockdown reduces the expression of EBNA1. Moreover, EBNA1 alone can enhance AURKA protein expression in AGS cells. Co-immunoprecipitation and NMR analysis between AURKA and EBNA1 depicts the interaction between two proteins. In addition, AURKA knockdown promotes apoptosis in EBV-infected AGS cells through cleavage of Caspase-3, -9, and PARP1. This study demonstrates that EBV oncogenic modulators EBNA1 possibly modulate AURKA in EBV-mediated gastric cancer progression.


Assuntos
Infecções por Vírus Epstein-Barr , Neoplasias Gástricas , Humanos , Herpesvirus Humano 4/metabolismo , Neoplasias Gástricas/metabolismo , Aurora Quinase A/genética , Aurora Quinase A/metabolismo , Antígenos Nucleares do Vírus Epstein-Barr/genética , Antígenos Nucleares do Vírus Epstein-Barr/metabolismo
9.
Data Brief ; 47: 108981, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36875222

RESUMO

Helicobacter pylori infection is associated with various gastrointestinal diseases and gastric cancer. Our data shows the H. pylori isolates and their associated pathology, isolated from two different stomach niches: gastric epithelium and gastric juice. Gastric adenocarcinoma (AGS) cells were infected with H. pylori juice (HJ1, HJ10 and HJ14) and biopsy (HB1, HB10 and HB14) isolates for 6, 12 and 24 hrs. To determine the cell migration ability of the infected cells, scratch wound assay was performed. The decrease in the wound area was measured by Image J software. Status of cell proliferation accessed by counting the cell number through trypan blue exclusion method. Further assessment of pathogenic potential and carcinogenic ability of the isolates was done by determining the genomic instability in the cell post infection. Cells were stained with DAPI and number of micro and macro nuclei was counted in the acquired images. The data will be helpful in understanding the difference in the carcinogenic ability of H. pylori with respect to their physiological niche.

10.
J Biomol Struct Dyn ; : 1-17, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37655681

RESUMO

Helicobacter pylori and Epstein Barr virus (EBV) are group1 carcinogens and their role in Gastric cancer (GC) is well established. Previously we have shown that H. pylori and EBV appears to support aggressive gastric oncogenesis through the upregulation of oncoprotein Gankyrin. Natural plant active molecules have the potential to interrupt oncogenesis. Herein, we investigated the potential of Withania somnifera root extract (WSE) as a possible chemotherapeutic agent against host oncoprotein Gankyrin whose expression was altered by H. pylori and EBV-associated modified cellular milieu. The results show that WSE does not have any inhibitory effect on H. pylori and EBV-associated gene transcripts except for the lmps (lmp1, lmp2a, and lmp2B). Moreover, the WSE exert their anticancer activity via host cellular response and decreased the expression of cell-migratory (mmp3 and mmp7); cell-cycle regulator (pcna); antiapoptotic gene (bcl2); increased the expression of the proapoptotic gene (apaf1 and bax); and tumor suppressor (p53, prb, and pten). Knockdown of Gankyrin followed by the treatment of WSE also decreases the expression of TNF-ɑ, Akt, and elevated the expression of NFkB, PARP, Casp3, and Casp9. WSE also reduces cell migration, and genomic instability and forced the cells to commit programmed cell death. Moreover, molecular simulation studies revealed that out of eight active compounds of WSE, only four compounds such as withaferin A (WFA), withanoside IV (WA4), withanolide B (WNB), and withanolide D (WND) showed direct stable interaction with Gankyrin. This article reports for the first time that treatment of WSE decreased the cancerous properties through host cellular response modulation in gastric epithelial cells coinfected with H. pylori and EBV.Communicated by Ramaswamy H. Sarma.

11.
J Biomol Struct Dyn ; : 1-13, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37937550

RESUMO

Cancer is a condition in which a few of the body's cells grow beyond its control and spread to other outward regions. Globally, gastric cancer (GC) is third most common cause of cancer-related mortality and the fourth most common kind of cancer. Persistent infection of VacA-positive Helicobacter pylori (H. pylori) modulates cellular physiology and leads to GC. About ∼70% of H. pylori are positive for vacuolating cytotoxin-A (VacA), and it infects ∼80-90% of world populations. Herein, for first time, we repurposed FDA-approved gram-negative antibiotics, which are feasible alternatives to existing regimens and may be used in combinatorial treatment against VacA-positive H. pylori. Out of 110 FDA-approved antibiotics, we retrieved 92 structures, which were screened against the VacA protein. Moreover, we determined that the top eight hit antibiotics viz; cefpiramide, cefiderocol, eravacycline, doxycycline, ceftriaxone, enoxacin, tedizolid, and cefamandole show binding free energies of -9.1, -8.9, -8.1, -8.0, -7.9, -7.8, -7.8 and -7.8 Kcal/mol, respectively, with VacA protein. Finally, we performed 100 ns duplicate MD simulations on the top eight selected antibiotics showing strong VacA binding. Subsequently, five antibiotics, including cefiderocol, cefpiramide, doxycycline, enoxacin, and tedizolid show stable ligand protein distance and good binding affinity revealed by the MM-PBSA scheme. Among the five antibiotics cefiderocol act as the most potent inhibitor (-28.33 kcal/mol). Furthermore, we also identified the hotspot residue like Asn-506, Tyr-529, and Phe-483 which control the interaction. Concisely, we identified antibiotics that can be repurposed against VacA of H. pylori and explored their molecular mechanism of interaction with VacA.Communicated by Ramaswamy H. Sarma.

12.
ACS Appl Bio Mater ; 6(11): 5018-5029, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37914190

RESUMO

Self-assembled metal-ion cross-linked multifunctional hydrogels are gaining a lot of attention in the fields of biomedical and biocatalysis. Herein, we report a heat-triggered metallogel that was spontaneously formed by the self-assembly of adenosine 5'-monophosphate (AMP) and cobalt chloride, accompanied by a color transition depicting an octahedral to tetrahedral transition at high temperature. The hydrogel shows excellent stability in a wide pH window from 1 to 12. The metallogel is being exploited as a multienzyme mimic, exhibiting pH-responsive catalase and peroxidase activity. Whereas catalase mimicking activity was demonstrated by the hydrogel under neutral and basic conditions, it shows peroxidase mimicking activity in an acidic medium. The multifunctionality of the synthesized metallogel was further demonstrated by phenoxazinone synthase-like activities. Owing to its catalase-mimicking activity, the metallogel could effectively reduce the oxidative stress produced in cells due to excess hydrogen peroxide by degrading H2O2 to O2 and H2O under physiological conditions. The biocompatible metallogel could prevent cell apoptosis by scavenging reactive oxygen species. A green and simple synthetic strategy utilizing commonly available biomolecules makes this metallogel highly attractive for catalytic and biomedical applications.


Assuntos
Hidrogéis , Peróxido de Hidrogênio , Catalase , Cobalto , Concentração de Íons de Hidrogênio
13.
Vaccines (Basel) ; 10(10)2022 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-36298443

RESUMO

Vaccine adjuvants are substances that improve the immune capacity of a recombinant vaccine to a great extent and have been in use since the early 1900s; they are primarily short-lived and initiate antigen activity, mainly an inflammatory response. With the developing technologies and innovation, early options such as alum were modified, yet the inorganic nature of major vaccine adjuvants caused several side effects. Outer membrane vesicles, which respond to the stressed environment, are small nano-sized particles secreted by gram-negative bacteria. The secretory nature of OMV gives us many benefits in terms of infection bioengineering. This article aims to provide a detailed overview of bacteria's outer membrane vesicles (OMV) and their potential usage as adjuvants in making OMV-based vaccines. The OMV adjuvant-based vaccines can be a great benefactor, and there are ongoing trials for formulating OMV adjuvant-based vaccines for SARS-CoV-2. This study emphasizes engineering the OMVs to develop better versions for safety purposes. This article will also provide a gist about the advantages and disadvantages of such vaccines, along with other aspects.

14.
Heliyon ; 7(3): e06572, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33778179

RESUMO

SARS-CoV-2 transmissibility is higher than that of other human coronaviruses; therefore, it poses a threat to the populated communities. We investigated mutations among envelope (E), membrane (M), and spike (S) proteins from different isolates of SARS-CoV-2 and plausible signaling influenced by mutated virus in a host. We procured updated protein sequences from the NCBI virus database. Mutations were analyzed in the retrieved sequences of the viral proteins through multiple sequence alignment. Additionally, the data was subjected to ScanPROSITE to analyse if the mutations generated a relevant sequence for host signaling. Unique mutations in E, M, and S proteins resulted in modification sites like PKC phosphorylation and N-myristoylation sites. Based on structural analysis, our study revealed that the D614G mutation in the S protein diminished the interaction with T859 and K854 of adjacent chains. Moreover, the S protein of SARS-CoV-2 consists of an Arg-Gly-Asp (RGD) tripeptide sequence, which could potentially interact with various members of integrin family receptors. RGD sequence in S protein might aid in the initial virus attachment. We speculated crucial host pathways which the mutated isolates of SARS-CoV-2 may alter like PKC, Src, and integrin mediated signaling pathways. PKC signaling is known to influence the caveosome/raft pathway which is critical for virus entry. Additionally, the myristoylated proteins might activate NF-κB, a master molecule of inflammation. Thus the mutations may contribute to the disease pathogenesis and distinct lung pathophysiological changes. Further the frequently occurring mutations in the protein can be studied for possible therapeutic interventions.

15.
J Oncol ; 2021: 5905357, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34925509

RESUMO

Smoking a cigarette generates over 4000 chemicals that have a deleterious impact on each part of the human body. It produces three main severe effects on the liver organ: oncogenic, immunological, and indirect or direct toxic effects. It results in the production of cytotoxic substances, which raises fibrosis and necro-inflammation. Additionally, it also directs the production of pro-inflammatory cytokines tumour necrosis factor alfa (TNF-α) and interleukins (IL-1ß, IL-6) that will be responsible for the chronic liver injury. Furthermore, it gives rise to secondary polycythemia and successively raises the turnover and mass of red cells, which might be a common factor responsible for the development of oxidative stress in the liver due to iron overload. It also produces chemicals that are having oncogenic properties and raises the risk of liver cancer especially in sufferers of chronic hepatitis C. Smoking modulates both humoral and cell-mediated responses by restricting the proliferation of lymphocytes and inducing their apoptosis and ultimately decreasing the surveillance of cancer cells. Moreover, it has been determined that heavy smoking impacts the response of hepatitis C patients to interferon (IFN) therapy through different mechanisms, which can be improved by phlebotomy. Efforts are being made in different nations in decreasing the prevalence of smoking to improve premature death and ill effects of their nation's individuals.

16.
SN Compr Clin Med ; 2(12): 2658-2669, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33169110

RESUMO

The pandemic of novel coronavirus disease (COVID-19) caused by the Severe Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) creates an immense menace to public health worldwide. Currently, the World Health Organization (WHO) has recognized the novel coronavirus as the main cause of global pandemic. Patients infected with this virus generally show fever, nausea, and respiratory illness, while some patients also manifest gastrointestinal symptoms such as abdominal pain, vomiting, and diarrhea. Traces of SARS-CoV-2 RNA have been found in gastrointestinal cells. Further angiotensin converting enzyme 2 (ACE2) the known receptor for the virus is extensively expressed in these cells. This implies that gastrointestinal tract can be infected and can also present them as a replication site for SARS-CoV-2, but since this infection may lead to multiple organ failure, therefore identification of another receptor is a plausible choice. This review aims to provide comprehensive information about probable receptors such as sialic acid and CD147 which may facilitate the virus entry. Several potential targets are mentioned which can be used as a therapeutic approach for COVID-19 and associated GI disorders. The gut microbiomes are responsible for high levels of interferon-gamma which causes hyper-inflammation and exacerbates the severity of the disease. Briefly, this article highlights the gut microbiome's relation and provides potential diagnostic approaches like RDT and LC-MS for sensitive and specific identification of viral proteins. Altogether, this article reviews epidemiology, probable receptors and put forward the tentative ideas of the therapeutic targets and diagnostic methods for COVID-19 with gastrointestinal aspect of disease.

17.
Front Physiol ; 11: 984, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32903640

RESUMO

Coronavirus disease 2019 (COVID-19) caused by SARS-CoV2 is associated with various comorbidities; cardiovascular diseases, hypertension, diabetes, liver, lung diseases, and neurological ailments. The majority of the dysfunctions mentioned above are often associated with endothelial deterioration, indicating that endothelium can be the target of SARS-CoV2. Our study is an exclusive observational study that quantitatively analyses COVID-19 related comorbidities. We retrieved the data of % population of COVID-19 hospitalized and deceased patients with associated comorbidities from publicly accessible portals of the five European countries. A two tailed t-test enabled us to determine the significant proportions of deaths compared to hospitalized patients with associated comorbidity. Our study revealed that deaths associated with cardiovascular diseases and diabetes are highly significant (p < 0.0001) compared to hospitalized in countries like Italy, France, and Spain unlike the Netherlands. Deaths from kidney diseases (Italy- p < 0.0001; Sweden- p < 0.0001; Netherlands- p = 0.0001; France- p = 0.0033) and neurological ailments (France- p = 0.0001; Netherlands- p < 0.0001) are significantly higher than the total hospitalized patients affected by the particular comorbidity. We have noted that deaths due to liver diseases are least associated with COVID-19 among all comorbidities. Intriguingly, immunodeficiency shows mixed outcomes in death proportions compared to the hospital admitted individuals. Besides, the treatment regime involves drugs like losartan, ACE inhibitors, angiotensin-receptor blockers, Remdesivir, Chloroquine, Hydroxychloroquine, etc. may modulate the severity of the comorbidities. These comorbidities can create chaos in the existing healthcare system and may worsen the disease outcome.

18.
Heliyon ; 6(12): e05706, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33324769

RESUMO

Coronaviruses are large positive-sense RNA viruses with spike-like peplomers on their surface. The Coronaviridae family's strains infect different animals and are popularly associated with several outbreaks, namely SARS and MERS epidemic. COVID-19 is one such recent outbreak caused by SARS-CoV-2 identified first in Wuhan, China. COVID-19 was declared a pandemic by WHO on 11th March 2020. Our review provides information covering various facets of the disease starting from its origin, transmission, mutations in the virus to pathophysiological changes in the host upon infection followed by diagnostics and possible therapeutics available to tackle the situation. We have highlighted the zoonotic origin of SARS-CoV-2, known to share 96.2% nucleotide similarity with bat coronavirus. Notably, several mutations in SARS-CoV-2 spike protein, nucleocapsid protein, PLpro, and ORF3a are reported across the globe. These mutations could alter the usual receptor binding function, fusion process with the host cell, virus replication, and the virus's assembly. Therefore, studying these mutations could help understand the virus's virulence properties and design suitable therapeutics. Moreover, the aggravated immune response to COVID-19 can be fatal. Hypertension, diabetes, and cardiovascular diseases are comorbidities substantially associated with SARS-CoV-2 infection. The review article discusses these aspects, stating the importance of various comorbidities in disease outcomes. Furthermore, medications' unavailability compels the clinicians to opt for atypical drugs like remdesivir, chloroquine, etc. The current diagnostics of COVID-19 include qRT-PCR, CT scan, serological tests, etc. We have described these aspects to expose the information to the scientific community and to accelerate the research.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA