Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Respir Crit Care Med ; 209(4): 427-443, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-37971785

RESUMO

Rationale: Microplastics are a pressing global concern, and inhalation of microplastic fibers has been associated with interstitial and bronchial inflammation in flock workers. However, how microplastic fibers affect the lungs is unknown. Objectives: Our aim was to assess the effects of 12 × 31 µm nylon 6,6 (nylon) and 15 × 52 µm polyethylene terephthalate (polyester) textile microplastic fibers on lung epithelial growth and differentiation. Methods: We used human and murine alveolar and airway-type organoids as well as air-liquid interface cultures derived from primary lung epithelial progenitor cells and incubated these with either nylon or polyester fibers or nylon leachate. In addition, mice received one dose of nylon fibers or nylon leachate, and, 7 days later, organoid-forming capacity of isolated epithelial cells was investigated. Measurements and Main Results: We observed that nylon microfibers, more than polyester, inhibited developing airway organoids and not established ones. This effect was mediated by components leaching from nylon. Epithelial cells isolated from mice exposed to nylon fibers or leachate also formed fewer airway organoids, suggesting long-lasting effects of nylon components on epithelial cells. Part of these effects was recapitulated in human air-liquid interface cultures. Transcriptomic analysis revealed upregulation of Hoxa5 after exposure to nylon fibers. Inhibiting Hoxa5 during nylon exposure restored airway organoid formation, confirming Hoxa5's pivotal role in the effects of nylon. Conclusions: These results suggest that components leaching from nylon 6,6 may especially harm developing airways and/or airways undergoing repair, and we strongly encourage characterization in more detail of both the hazard of and the exposure to microplastic fibers.


Assuntos
Caprolactama/análogos & derivados , Microplásticos , Plásticos , Polímeros , Camundongos , Humanos , Animais , Nylons , Têxteis , Poliésteres
2.
Am J Physiol Lung Cell Mol Physiol ; 325(4): L460-L466, 2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37605846

RESUMO

Inhalation of noxious gasses induces oxidative stress in airway epithelial cells (AECs), which may lead to cellular senescence and contribute to the development of chronic obstructive pulmonary disease (COPD). FAM13A, a well-known COPD susceptibility gene, is highly expressed in airway epithelium. We studied whether its expression is associated with aging and cellular senescence and affects airway epithelial responses to paraquat, a cellular senescence inducer. The association between age and FAM13A expression was investigated in two datasets of human lung tissue and bronchial brushings from current/ex-smokers with/without COPD. Protein levels of FAM13A and cellular senescence marker p21 were investigated using immunohistochemistry in lung tissue from patients with COPD. In vitro, FAM13A and P21 expression was assessed using qPCR in air-liquid-interface (ALI)-differentiated AECs in absence/presence of paraquat. In addition, FAM13A was overexpressed in human bronchial epithelial 16HBE cells and the effect on P21 expression (qPCR) and mitochondrial reactive oxygen species (ROS) production (MitoSOX staining) was assessed. Lower FAM13A expression was significantly associated with increasing age in lung tissue and bronchial epithelium. In airway epithelium of patients with COPD, we found a negative correlation between FAM13A and p21 protein levels. In ALI-differentiated AECs, the paraquat-induced decrease in FAM13A expression was accompanied by increased P21 expression. In 16HBE cells, the overexpression of FAM13A significantly reduced paraquat-induced P21 expression and mitochondrial ROS production. Our data suggest that FAM13A expression decreases with aging, resulting in higher P21 expression and mitochondrial ROS production in the airway epithelium, thus facilitating cellular senescence and as such potentially contributing to accelerated lung aging in COPD.NEW & NOTEWORTHY To our knowledge, this is the first study investigating the role of the COPD susceptibility gene FAM13A in aging and cellular senescence. We found that FAM13A negatively regulates the expression of the cellular senescence marker P21 and mitochondrial ROS production in the airway epithelium. In this way, the lower expression of FAM13A observed upon aging may facilitate cellular senescence and potentially contribute to accelerated lung aging in COPD.


Assuntos
Paraquat , Doença Pulmonar Obstrutiva Crônica , Humanos , Espécies Reativas de Oxigênio/metabolismo , Paraquat/toxicidade , Doença Pulmonar Obstrutiva Crônica/metabolismo , Células Epiteliais/metabolismo , Senescência Celular , Proteínas Ativadoras de GTPase/metabolismo
3.
Respir Res ; 24(1): 130, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37170105

RESUMO

After more than two years the COVID-19 pandemic, that is caused by infection with the respiratory SARS-CoV-2 virus, is still ongoing. The risk to develop severe COVID-19 upon SARS-CoV-2 infection is increased in individuals with a high age, high body mass index, and who are smoking. The SARS-CoV-2 virus infects cells of the upper respiratory tract by entering these cells upon binding to the Angiotensin-converting enzyme 2 (ACE2) receptor. ACE2 is expressed in various cell types in the lung but the expression is especially high in goblet and ciliated cells. Recently, it was shown that next to its full-length isoform, ACE2 also has a short isoform. The short isoform is unable to bind SARS-CoV-2 and does not facilitate viral entry. In the current study we investigated whether active cigarette smoking increases the expression of the long or the short ACE2 isoform. We showed that in active smokers the expression of the long, active isoform, but not the short isoform of ACE2 is higher compared to never smokers. Additionally, it was shown that the expression of especially the long, active isoform of ACE2 was associated with secretory, club and goblet epithelial cells. This study increases our understanding of why current smokers are more susceptible to SARS-CoV-2 infection, in addition to the already established increased risk to develop severe COVID-19.


Assuntos
COVID-19 , Mucosa Respiratória , Fumar , Humanos , Enzima de Conversão de Angiotensina 2 , COVID-19/genética , COVID-19/imunologia , Epitélio/metabolismo , Pandemias , Peptidil Dipeptidase A , Mucosa Respiratória/metabolismo , SARS-CoV-2 , Fumar/efeitos adversos , Glicoproteína da Espícula de Coronavírus/metabolismo
4.
J Pathol ; 254(4): 344-357, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33506963

RESUMO

Fibrosis results from aberrant wound healing and is characterized by an accumulation of extracellular matrix, impairing the function of an affected organ. Increased deposition of extracellular matrix proteins, disruption of matrix degradation, but also abnormal post-translational modifications alter the biochemical composition and biophysical properties of the tissue microenvironment - the stroma. Macrophages are known to play an important role in wound healing and tissue repair, but the direct influence of fibrotic stroma on macrophage behaviour is still an under-investigated element in the pathogenesis of fibrosis. In this review, the current knowledge on interactions between macrophages and (fibrotic) stroma will be discussed from biochemical, biophysical, and cellular perspectives. Furthermore, we provide future perspectives with regard to how macrophage-stroma interactions can be examined further to ultimately facilitate more specific targeting of these interactions in the treatment of fibrosis. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Matriz Extracelular/fisiologia , Fibrose/fisiopatologia , Macrófagos/metabolismo , Cicatrização/fisiologia , Animais , Humanos
5.
Sci Rep ; 13(1): 5670, 2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-37024614

RESUMO

Idiopathic pulmonary fibrosis is a progressive lung disease that causes scarring and loss of lung function. Macrophages play a key role in fibrosis, but their responses to altered morphological and mechanical properties of the extracellular matrix in fibrosis is relatively unexplored. Our previous work showed functional changes in murine fetal liver-derived alveolar macrophages on fibrous or globular collagen morphologies. In this study, we applied differential proteomics to further investigate molecular mechanisms underlying the observed functional changes. Macrophages cultured on uncoated, fibrous, or globular collagen-coated plastic were analyzed by liquid chromatography-mass spectrometry. The presence of collagen affected expression of 77 proteins, while 142 were differentially expressed between macrophages grown on fibrous or globular collagen. Biological process and pathway enrichment analysis revealed that culturing on any type of collagen induced higher expression of enzymes involved in glycolysis. However, this did not lead to a higher rate of glycolysis, probably because of a concomitant decrease in activity of these enzymes. Our data suggest that macrophages sense collagen morphologies and can respond with changes in expression and activity of metabolism-related proteins. These findings suggest intimate interactions between macrophages and their surroundings that may be important in repair or fibrosis of lung tissue.


Assuntos
Colágeno Tipo I , Proteômica , Camundongos , Animais , Colágeno Tipo I/metabolismo , Proteômica/métodos , Colágeno/metabolismo , Macrófagos/metabolismo , Fibrose
6.
Small Methods ; 5(4): e2000849, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-34927846

RESUMO

Macrophages are well known for their role in immune responses and tissue homeostasis. They can polarize towards various phenotypes in response to biophysical and biochemical stimuli. However, little is known about the early kinetics of macrophage polarization in response to single biophysical or biochemical stimuli. Our approach, combining optical tweezers, confocal fluorescence microscopy, and microfluidics, allows us to isolate single macrophages and follow their immediate responses to a biochemical stimulus in real-time. This strategy enables live-cell imaging at high spatiotemporal resolution and omits surface adhesion and cell-cell contact as biophysical stimuli. The approach is validated by successfully following the early phase of an oxidative stress response of macrophages upon phorbol 12-myristate 13-acetate (PMA) stimulation, allowing detailed analysis of the initial macrophage response upon a single biochemical stimulus within seconds after its application, thereby eliminating delay times introduced by other techniques during the stimulation procedure. Hence, an unprecedented view of the early kinetics of macrophage polarization is provided.


Assuntos
Macrófagos/imunologia , Pinças Ópticas , Animais , Cinética , Ativação de Macrófagos , Camundongos , Ésteres de Forbol , Células RAW 264.7 , Espécies Reativas de Oxigênio , Regulação para Cima
7.
Front Pharmacol ; 12: 669037, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34393771

RESUMO

Introduction: Idiopathic pulmonary fibrosis (IPF) is a fibrotic lung disease characterized by excess deposition and altered structure of extracellular matrix (ECM) in the lungs. The fibrotic ECM is paramount in directing resident cells toward a profibrotic phenotype. Collagens, an important part of the fibrotic ECM, have been shown to be structurally different in IPF. To further understand the disease to develop better treatments, the signals from the ECM that drive fibrosis need to be identified. Adipose tissue-derived stromal cell conditioned medium (ASC-CM) has demonstrated antifibrotic effects in animal studies but has not been tested in human samples yet. In this study, the collagen structural integrity in (fibrotic) lung tissue, its interactions with fibroblasts and effects of ASC-CM treatment hereon were studied. Methods: Native and decellularized lung tissue from patients with IPF and controls were stained for denatured collagen using a collagen hybridizing peptide. Primary lung fibroblasts were seeded into decellularized matrices from IPF and control subjects and cultured for 7 days in the presence or absence of ASC-CM. Reseeded matrices were fixed, stained and analyzed for total tissue deposition and specific protein expression. Results: In both native and decellularized lung tissue, more denatured collagen was observed in IPF tissue compared to control tissue. Upon recellularization with fibroblasts, the presence of denatured collagen was equalized in IPF and control matrices, whereas total ECM was higher in IPF matrices than in the control. Treatment with ASC-CM resulted in less ECM deposition, but did not alter the levels of denatured collagen. Discussion: Our data showed that ASC-CM can inhibit fibrotic ECM-induced profibrotic behavior of fibroblasts. This process was independent of collagen structural integrity. Our findings open up new avenues for ASC-CM to be explored as treatment for IPF.

8.
Transplantation ; 101(3): 531-540, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27362315

RESUMO

BACKGROUND: Renal transplantation is the preferred treatment for patients with end-stage renal disease. Human cytomegalovirus (HCMV) activation is associated with decreased renal graft function and survival. Human cytomegalovirus encodes several immune modulatory proteins, including the G protein-coupled receptor US28, which scavenges human chemokines and modulates intracellular signaling. METHODS: Our aim was to identify the expression and localization of US28 in renal allograft biopsies by immunohistochemistry and determine its role in viral spreading in vitro. RESULTS: Immunohistochemistry revealed US28 in 31 of 34 renal transplant biopsies from HCMV-seropositive donors. Expression was independent of HCMV viremia or IgG serostatus. US28 was predominantly expressed in the cytoplasm of vascular smooth muscle cells (VSMCs) and tubular epithelial cells, with a median positivity of 20% and 40%, respectively. Also, US28-positive cells were present within arterial neointima. In contrast to US28, HCMV-encoded immediate early antigen was detected in less than 5% of VSMCs, tubular epithelial cells, interstitial endothelium, interstitial inflammatory infiltrates, and glomerular cells.Primary VSMCs were infected with green fluorescent protein-tagged wild type or US28-deficient HCMV. The viral spreading of US28-deficient HCMV, via culture medium or cell-to-cell transmission, was significantly impeded as shown by green fluorescent protein (ie, infected) cell quantification and quantitative real-time polymerase chain reaction. Additionally, the number and size of foci was smaller. CONCLUSIONS: In summary, HCMV-encoded US28 was detected in renal allografts from HCMV-positive donors independent of viremia and serostatus. Also, US28 facilitates HCMV spreading in VSMCs in vitro. Because the vasculature is affected in chronic renal transplant dysfunction, US28 may provide a potential target for therapeutic intervention.


Assuntos
Infecções por Citomegalovirus/metabolismo , Citomegalovirus/metabolismo , Transplante de Rim/efeitos adversos , Rim/metabolismo , Receptores de Quimiocinas/metabolismo , Doadores de Tecidos , Proteínas Virais/metabolismo , Adulto , Idoso , Aloenxertos , Anticorpos Antivirais/sangue , Biomarcadores/sangue , Biópsia , Células Cultivadas , Citomegalovirus/imunologia , Citomegalovirus/patogenicidade , Infecções por Citomegalovirus/diagnóstico , Infecções por Citomegalovirus/imunologia , Infecções por Citomegalovirus/virologia , Células Epiteliais/imunologia , Células Epiteliais/metabolismo , Células Epiteliais/virologia , Feminino , Humanos , Imunoglobulina G/sangue , Imuno-Histoquímica , Rim/imunologia , Rim/cirurgia , Rim/virologia , Transplante de Rim/métodos , Masculino , Pessoa de Meia-Idade , Músculo Liso Vascular/imunologia , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/virologia , Miócitos de Músculo Liso/imunologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/virologia , Receptores de Quimiocinas/imunologia , Estudos Retrospectivos , Fatores de Tempo , Proteínas Virais/imunologia , Virulência , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA