Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
EMBO J ; 36(10): 1364-1378, 2017 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-28438891

RESUMO

Cohesin mediates sister chromatid cohesion which is essential for chromosome segregation and repair. Sister chromatid cohesion requires an acetyl-transferase (Eso1 in fission yeast) counteracting Wpl1, promoting cohesin release from DNA We report here that Wpl1 anti-cohesion function includes an additional mechanism. A genetic screen uncovered that Protein Phosphatase 4 (PP4) mutants allowed cell survival in the complete absence of Eso1. PP4 co-immunoprecipitated Wpl1 and cohesin and Wpl1 triggered Rad21 de-phosphorylation in a PP4-dependent manner. Relevant residues were identified and mapped within the central domain of Rad21. Phospho-mimicking alleles dampened Wpl1 anti-cohesion activity, while alanine mutants were neutral indicating that Rad21 phosphorylation would shelter cohesin from Wpl1 unless erased by PP4. Experiments in post-replicative cells lacking Eso1 revealed two cohesin populations. Type 1 was released from DNA by Wpl1 in a PP4-independent manner. Type 2 cohesin, however, remained DNA-bound and lost its cohesiveness in a manner depending on Wpl1- and PP4-mediated Rad21 de-phosphorylation. These results reveal that Wpl1 antagonizes sister chromatid cohesion by a novel pathway regulated by the phosphorylation status of the cohesin kleisin subunit.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Fosfoproteínas/metabolismo , Processamento de Proteína Pós-Traducional , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/metabolismo , Deleção de Genes , Imunoprecipitação , Mutação , Fosfoproteínas Fosfatases/genética , Fosforilação , Proteínas de Schizosaccharomyces pombe/genética , Coesinas
2.
Genes Dev ; 23(12): 1399-407, 2009 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-19528318

RESUMO

Cells use strategic metabolites to sense the metabolome and accordingly modulate gene expression. Here, we show that the purine and phosphate pathways are positively regulated by the metabolic intermediate AICAR (5'-phosphoribosyl-5-amino-4-imidazole carboxamide). The transcription factor Pho2p is required for up-regulation of all AICAR-responsive genes. Accordingly, the binding of Pho2p to purine and phosphate pathway gene promoters is enhanced upon AICAR accumulation. In vitro, AICAR binds both Pho2p and Pho4p transcription factors and stimulates the interaction between Pho2p and either Bas1p or Pho4p in vivo. In contrast, SAICAR (succinyl-AICAR) only affects Pho2p-Bas1p interaction and specifically up-regulates purine regulon genes. Together, our data show that Bas1p and Pho4p compete for Pho2p binding, hence leading to the concerted regulation of cellular nucleotide synthesis and phosphate consumption.


Assuntos
Regulação da Expressão Gênica , Fosfatos/metabolismo , Purinas/biossíntese , Saccharomyces cerevisiae/fisiologia , Fatores de Transcrição/metabolismo , Aminoimidazol Carboxamida/análogos & derivados , Aminoimidazol Carboxamida/metabolismo , Núcleo Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Homeodomínio/metabolismo , Homeostase , Regiões Promotoras Genéticas/genética , Ligação Proteica , Transporte Proteico , Regulon/genética , Ribonucleotídeos/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transativadores/metabolismo , Regulação para Cima
3.
EMBO Rep ; 13(7): 645-52, 2012 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-22640989

RESUMO

Pds5 and Wpl1 act as anti-establishment factors preventing sister-chromatid cohesion until counteracted in S-phase by the cohesin acetyl-transferase Eso1. However, Pds5 is also required to maintain sister-chromatid cohesion in G2. Here, we show that Pds5 is essential for cohesin acetylation by Eso1 and ensures the maintenance of cohesion by promoting a stable cohesin interaction with replicated chromosomes. The latter requires Eso1 only in the presence of Wapl, indicating that cohesin stabilization relies on Eso1 only to neutralize the anti-establishment activity. We suggest that Eso1 requires Pds5 to counteract anti-establishment. This allows both cohesion establishment and Pds5-dependent stable cohesin binding to chromosomes.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Cromátides/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Acetilação , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/genética , Proteínas Cromossômicas não Histona/genética , Fase G2 , Mitose , Mutação , Fase S , Schizosaccharomyces/metabolismo , Proteínas de Schizosaccharomyces pombe/genética , Coesinas
4.
EMBO J ; 27(1): 111-21, 2008 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-18079700

RESUMO

Sister chromatid cohesion is mediated by cohesin, but the process of cohesion establishment during S-phase is still enigmatic. In mammalian cells, cohesin binding to chromatin is dynamic in G1, but becomes stabilized during S-phase. Whether the regulation of cohesin stability is integral to the process of cohesion establishment is unknown. Here, we provide evidence that fission yeast cohesin also displays dynamic behavior. Cohesin association with G1 chromosomes requires continued activity of the cohesin loader Mis4/Ssl3, suggesting that repeated loading cycles maintain cohesin binding. Cohesin instability in G1 depends on wpl1, the fission yeast ortholog of mammalian Wapl, suggestive of a conserved mechanism that controls cohesin stability on chromosomes. wpl1 is nonessential, indicating that a change in wpl1-dependent cohesin dynamics is dispensable for cohesion establishment. Instead, we find that cohesin stability increases at the time of S-phase in a reaction that can be uncoupled from DNA replication. Hence, cohesin stabilization might be a pre-requisite for cohesion establishment rather than its consequence.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Ciclo Celular/genética , Proteínas Cromossômicas não Histona/metabolismo , Cromossomos Fúngicos/metabolismo , Proteínas Nucleares/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Proteínas de Ciclo Celular/genética , Cromatina/metabolismo , Proteínas Cromossômicas não Histona/genética , Fase G1/genética , Fase G2/genética , Proteínas Nucleares/genética , Ligação Proteica , Fase S/genética , Schizosaccharomyces/citologia , Troca de Cromátide Irmã/genética , Coesinas
5.
Elife ; 92020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31895039

RESUMO

Cohesin has essential roles in chromosome structure, segregation and repair. Cohesin binding to chromosomes is catalyzed by the cohesin loader, Mis4 in fission yeast. How cells fine tune cohesin deposition is largely unknown. Here, we provide evidence that Mis4 activity is regulated by phosphorylation of its cohesin substrate. A genetic screen for negative regulators of Mis4 yielded a CDK called Pef1, whose closest human homologue is CDK5. Inhibition of Pef1 kinase activity rescued cohesin loader deficiencies. In an otherwise wild-type background, Pef1 ablation stimulated cohesin binding to its regular sites along chromosomes while ablating Protein Phosphatase 4 had the opposite effect. Pef1 and PP4 control the phosphorylation state of the cohesin kleisin Rad21. The CDK phosphorylates Rad21 on Threonine 262. Pef1 ablation, non-phosphorylatable Rad21-T262 or mutations within a Rad21 binding domain of Mis4 alleviated the effect of PP4 deficiency. Such a CDK/PP4-based regulation of cohesin loader activity could provide an efficient mechanism for translating cellular cues into a fast and accurate cohesin response.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Cromossomos Fúngicos/metabolismo , Quinases Ciclina-Dependentes/genética , Fosfoproteínas Fosfatases/genética , Proteínas de Saccharomyces cerevisiae/genética , Schizosaccharomyces/fisiologia , Quinases Ciclina-Dependentes/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Ligação Proteica , Proteínas de Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/genética , Coesinas
6.
Curr Biol ; 16(9): 875-81, 2006 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-16682348

RESUMO

Sister-chromatid cohesion is mediated by cohesin, a ring-shape complex made of four core subunits called Scc1, Scc3, Smc1, and Smc3 in Saccharomyces cerevisiae (Rad21, Psc3, Psm1, and Psm3 in Schizosaccharomyces pombe). How cohesin ensures cohesion is unknown, although its ring shape suggests that it may tether sister DNA strands by encircling them . Cohesion establishment is a two-step process. Cohesin is loaded on chromosomes before replication and cohesion is subsequently established during S phase. In S. cerevisiae, cohesin loading requires a separate complex containing the Scc2 and Scc4 proteins. Cohesin rings fail to associate with chromatin and cohesion can not establish when Scc2 is impaired . The mechanism of loading is unknown, although some data suggest that hydrolysis of ATP bound to Smc1/3 is required . Scc2 homologs exist in fission yeast (Mis4), Drosophila, Xenopus, and human . By contrast, no homolog of Scc4 has been identified so far. We report here on the identification of fission yeast Ssl3 as a Scc4-like factor. Ssl3 is in complex with Mis4 and, as a bona fide loading factor, Ssl3 is required in G1 for cohesin binding to chromosomes but dispensable in G2 when cohesion is established. The discovery of a functional homolog of Scc4 indicates that the machinery of cohesin loading is conserved among eukaryotes.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Ciclo Celular/fisiologia , Cromátides/fisiologia , Proteínas Cromossômicas não Histona/fisiologia , Proteínas de Ligação a DNA/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Schizosaccharomyces pombe/fisiologia , Schizosaccharomyces/fisiologia , Proteínas de Ciclo Celular/fisiologia , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Ligação a DNA/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Proteínas de Schizosaccharomyces pombe/metabolismo , Coesinas
7.
Curr Biol ; 15(24): 2263-70, 2005 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-16360688

RESUMO

Meiosis consists of a single round of DNA replication followed by two consecutive nuclear divisions. During the first division (MI), sister kinetochores must orient toward the same pole to favor reductional segregation. Correct chromosome segregation during the second division (MII) requires the retention of centromeric cohesion until anaphase II. The spindle checkpoint protein Bub1 is essential for both processes in fission yeast . When bub1 is deleted, the Shugoshin protein Sgo1 is not recruited to centromeres, cohesin Rec8 does not persist at centromeres, and sister-chromatid cohesion is lost by the end of MI. Deletion of bub1 also affects kinetochore orientation because sister centromeres can move to opposite spindle poles in approximately 30% of MI divisions. We show here that these two functions are separable within the Bub1 protein. The N terminus of Bub1 is necessary and sufficient for Sgo1 targeting to centromeres and the protection of cohesion, whereas the C-terminal kinase domain acts together with Sgo2, the second fission-yeast Shugoshin protein, to promote sister-kinetochore co-orientation during MI. Additional analyses suggest that the protection of centromeric cohesion does not operate when sister kinetochores attach to opposite spindle poles during MI. Sgo1-mediated protection of centromere cohesion might therefore be regulated by the mode of kinetochore attachment.


Assuntos
Proteínas Cromossômicas não Histona/metabolismo , Segregação de Cromossomos/fisiologia , Meiose/fisiologia , Proteínas Serina-Treonina Quinases/genética , Proteínas de Schizosaccharomyces pombe/genética , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/fisiologia , Imunoprecipitação da Cromatina , Proteínas de Fluorescência Verde , Cinetocoros/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Estrutura Terciária de Proteína
8.
Nucleic Acids Res ; 32(9): 2957-65, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15161959

RESUMO

The early development of amphibians takes place in the absence of significant transcription and is controlled at the post-transcriptional level. We have reported that in vitro synthesized transcripts injected into axolotl fertilized eggs or oocytes were not continuously degraded as their abundance apparently fluctuated over time, with detected amounts sometimes higher than initial injected amounts. To further characterize this phenomenon, we have co-injected RNA chain terminators to prevent RNA synthesis. This led to the suppression of fluctuations and to a regular decrease in the amount of transcripts that appeared to be more stable in the presence of inhibitors. These observations indicate a coupling between RNA synthesis and an accelerated degradation. Throughout the time course, cRNA molecules could be detected, and their abundance increased in the early phase of the kinetics, supporting the implication of an RNA-dependent RNA polymerase in an asymmetric amplification process. Finally, when the fate of the injected transcripts was investigated in individual oocytes, we observed an absolute increase in abundance in some but not all oocytes, supporting the existence of a limiting step in the initiation of the RNA amplification stochastic process.


Assuntos
Ambystoma mexicanum/metabolismo , Oócitos/metabolismo , Estabilidade de RNA , RNA Mensageiro/metabolismo , RNA Mensageiro/farmacologia , Transcrição Gênica , Proteínas de Peixe-Zebra , Animais , Desoxiadenosinas/farmacologia , Nucleotídeos de Desoxiuracil/farmacologia , Feminino , Genes myc/genética , Cinética , Oócitos/efeitos dos fármacos , Proteínas Proto-Oncogênicas/genética , Estabilidade de RNA/efeitos dos fármacos , RNA Complementar/biossíntese , RNA Complementar/genética , RNA Complementar/metabolismo , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , RNA Polimerase Dependente de RNA/metabolismo , Processos Estocásticos , Transcrição Gênica/efeitos dos fármacos , Transcrição Gênica/genética , Proteínas Wnt , Xenopus/genética
9.
Int J Dev Biol ; 46(5): 731-9, 2002 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-12216985

RESUMO

The products of the Wntgene family play an essential role in several aspects of embryo patterning. We have investigated the post-transcriptional regulation of three of these genes: Awnt-1, Awnt-5A and Awnt-5B during axolotl (Ambystoma mexicanum) oogenesis, oocyte maturation and early development. We show that Awnt-1, Awnt-5A and Awnt-5B mRNAs are maternally expressed. The three transcripts are tightly regulated at specific times and display differential mRNA stability, poly(A) tail length and localization. In contrastto Awnt-5Bwhich is restricted to the animal hemisphere, Awnt-1 and Awnt-5A have no particular localization in stage VI oocytes. Interestingly, these two mRNAs exhibit a polyadenylation gradient along the animal-vegetal axis. Moreover, after meiotic maturation, Awnt-1 and 5A mRNAs become exclusively localized to the animal pole. This isthe first evidence of a complete mRNA re-localization to the animal hemisphere during oocyte maturation.


Assuntos
Processamento Pós-Transcricional do RNA , RNA Mensageiro/metabolismo , Proteínas de Peixe-Zebra , Ambystoma , Animais , Northern Blotting , Fertilização , Hibridização In Situ , Meiose , Oócitos/metabolismo , Poli A , Poliadenilação , Proteínas/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo , Proteínas Wnt , Proteína Wnt-5a
10.
C R Biol ; 326(12): 1135-47, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14746268

RESUMO

Using an in vivo heterologous system to study the stability of Xenopus laevis RNA injected into axolotl (Ambystoma mexicanum) fertilized eggs, we have previously observed unexpected fluctuations in RNA level during early development [Andéol et al., Differentiation 63 (1998) 69-79]. In this study, we further characterize this phenomenon and establish its existence during axolotl and Xenopus oogenesis, suggesting a phylogenetically conserved mechanism. The phenomenon can occur with a variety of exogenous sense and antisense substrates. RNase protection experiments establish that most of the molecules have the same polarity as the initially injected RNA. In addition, trace amount of complementary RNA (cRNA) can be detected the injected samples. Cordycepin prevent increases in RNA levels indicating the involvement of an RNA synthesis. These results indicate the existence of an in vivo post-transcriptional RNA amplification mechanism during the early development of amphibians.


Assuntos
Desoxiadenosinas/farmacologia , Oócitos , RNA/administração & dosagem , RNA/efeitos dos fármacos , Ambystoma mexicanum , Animais , Nucleotídeos de Desoxiadenina/farmacologia , Expressão Gênica , Injeções , RNA/análise , RNA/fisiologia , Xenopus laevis
11.
Mol Cell Biol ; 31(8): 1771-86, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21300781

RESUMO

In budding yeast and humans, cohesion establishment during S phase requires the acetyltransferase Eco1/Esco1-2, which acetylates the cohesin subunit Smc3 on two conserved lysine residues. Whether Smc3 is the sole Eco1/Esco1-2 effector and how Smc3 acetylation promotes cohesion are unknown. In fission yeast (Schizosaccharomyces pombe), as in humans, cohesin binding to G(1) chromosomes is dynamic and the unloading reaction is stimulated by Wpl1 (human ortholog, Wapl). During S phase, a subpopulation of cohesin becomes stably bound to chromatin in an Eso1 (fission yeast Eco1/Esco1-2)-dependent manner. Cohesin stabilization occurs unevenly along chromosomes. Cohesin remains largely labile at the rDNA repeats but binds mostly in the stable mode to pericentromere regions. This pattern is largely unchanged in eso1Δ wpl1Δ cells, and cohesion is unaffected, indicating that the main Eso1 role is counteracting Wpl1. A mutant of Psm3 (fission yeast Smc3) that mimics its acetylated state renders cohesin less sensitive to Wpl1-dependent unloading and partially bypasses the Eso1 requirement but cannot generate the stable mode of cohesin binding in the absence of Eso1. Conversely, nonacetylatable Psm3 reduces the stable cohesin fraction and affects cohesion in a Wpl1-dependent manner, but cells are viable. We propose that Psm3 acetylation contributes to Eso1 counteracting of Wpl1 to secure stable cohesin interaction with postreplicative chromosomes but that it is not the sole molecular event by which this occurs.


Assuntos
Proteínas de Transporte/metabolismo , Proteínas de Ciclo Celular/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/metabolismo , Acetilação , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Transporte/genética , Proteínas de Ciclo Celular/genética , Cromátides/genética , Cromátides/metabolismo , Proteínas Cromossômicas não Histona/genética , Cromossomos Fúngicos , Lisina/genética , Ligação Proteica , Schizosaccharomyces/citologia , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/antagonistas & inibidores , Proteínas de Schizosaccharomyces pombe/genética
12.
Dev Biol ; 267(2): 265-78, 2004 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-15013793

RESUMO

Activity of Cdc2, the universal inducer of mitosis, is regulated by phosphorylation and binding to cyclin B. Comparative studies using oocytes from several amphibian species have shown that different mechanisms allow Cdc2 activation and entry into first meiotic division. In Xenopus, immature oocytes stockpile pre-M-phase promoting factor (MPF) composed of Cdc2-cyclin B complexes maintained inactive by Thr14 and Tyr15 phosphorylation of Cdc2. Activation of MPF relies on the conversion of pre-MPF into MPF by Cdc2 dephosphorylation, implying a positive feedback loop known as MPF auto-amplification. On the contrary, it has been proposed that pre-MPF is absent in immature oocyte and that MPF activation depends on cyclin synthesis in some fishes and other amphibians. We demonstrate here that MPF activation in the axolotl oocyte, an urodele amphibian, is achieved through mechanisms resembling partly those found in Xenopus oocyte. Pre-MPF is present in axolotl immature oocyte and is activated during meiotic maturation. However, monomeric Cdc2 is expressed in large excess over pre-MPF, and pre-MPF activation by Cdc2 dephosphorylation takes place progressively and not abruptly as in Xenopus oocyte. The intracellular compartmentalization as well as the low level of pre-MPF in axolotl oocyte could account for the differences in oocyte MPF activation in both species.


Assuntos
Ambystoma mexicanum/fisiologia , Proteína Quinase CDC2/metabolismo , Fator Promotor de Maturação/metabolismo , Meiose/fisiologia , Oócitos/fisiologia , Precursores de Proteínas/metabolismo , Ambystoma mexicanum/metabolismo , Animais , Cromatografia em Gel , Ciclina A/metabolismo , Ciclina B/metabolismo , Ativação Enzimática , Feminino , Histonas/metabolismo , Immunoblotting , Sistema de Sinalização das MAP Quinases/fisiologia , Oócitos/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Fosforilação , Fosfatases cdc25/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA