RESUMO
BACKGROUND AND AIMS: Trientine (TRI) and D-penicillamine (PEN) are used to treat copper overload in Wilson disease. Their main mode of action is thought to be through the facilitation of urinary copper excretion. In a recent study, TRI was noninferior to PEN despite lower 24-hour urinary copper excretion than PEN. We tested whether TRI and/or PEN also inhibit intestinal copper absorption. APPROACH AND RESULTS: Sixteen healthy volunteers were examined with positron emission tomography (PET)/CT 1 and 15 hours after an oral Copper-64 ( 64 Cu) dose. They then received 7 days of either PEN or TRI (trientine tetrahydrochloride), after which the 64 Cu PET/CT scans were repeated. Venous blood samples were also collected. Pretreatment to posttreatment changes of the hepatic 64 Cu uptake reflect the effect of drugs on intestinal absorption. 64 Cu activity was normalized to dose and body weight and expressed as the mean standard uptake value. TRI (n=8) reduced hepatic 64 Cu activity 1 hour after 64 Cu dose from 6.17 (4.73) to 1.47 (2.97) standard uptake value, p <0.02, and after 15 hours from 14.24 (3.09) to 6.19 (3.43), p <0.02, indicating strong inhibition of intestinal 64 Cu absorption. PEN (n=8) slightly reduced hepatic standard uptake value at 15 hours, from 16.30 (5.63) to 12.17 (1.44), p <0.04. CONCLUSIONS: In this mechanistic study, we show that TRI inhibits intestinal copper absorption, in addition to its cupriuretic effect. In contrast, PEN has modest effects on the intestinal copper absorption. This may explain why TRI and PEN are equally effective although urinary copper excretion is lower with TRI. The study questions whether the same therapeutic targets for 24-hour urinary excretion apply to both drugs.
Assuntos
Degeneração Hepatolenticular , Penicilamina , Humanos , Penicilamina/farmacologia , Penicilamina/uso terapêutico , Trientina/farmacologia , Trientina/uso terapêutico , Cobre , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Radioisótopos de Cobre/uso terapêutico , Degeneração Hepatolenticular/tratamento farmacológico , Tomografia por Emissão de PósitronsRESUMO
BACKGROUND & AIMS: In Wilson disease (WD), copper accumulates in the liver and brain causing disease. Bis-choline tetrathiomolybdate (TTM) is a potent copper chelator that may be associated with a lower risk of inducing paradoxical neurological worsening than conventional therapy for neurologic WD. To better understand the mode of action of TTM, we investigated its effects on copper absorption and biliary excretion. METHODS: In a double-blind randomized setting, hepatic 64Cu activity was examined after orally administered 64Cu by PET/CT in 16 healthy volunteers before and after seven days of TTM treatment (15 mg/d) or placebo. Oral 64Cu was administered one hour after the final TTM dose. Changes in hepatic 64Cu activity reflected changes in intestinal 64Cu uptake. Additionally, in four patients with WD, the distribution of 64Cu in venous blood, liver, gallbladder, kidney, and brain was followed after i.v. 64Cu dosing for up to 68 hours before and after seven days of TTM (15 mg/day), using PET/MRI. Increased gallbladder 64Cu activity was taken as evidence of increased biliary 64Cu excretion. RESULTS: In healthy volunteers, TTM reduced intestinal 64Cu uptake by 82% 15 hours after the oral 64Cu dose. In patients with WD, gallbladder 64Cu activity was negligible before and after TTM, while TTM effectively retained 64Cu in the blood, significantly reduced hepatic 64Cu activity at all time-points and significantly reduced cerebral 64Cu activity two hours after the intravenous 64Cu dose. CONCLUSIONS: While we did not show an increase in biliary excretion of 64Cu following TTM administration, we demonstrated that TTM effectively inhibited most intestinal 64Cu uptake and retained 64Cu in the blood stream, limiting the exposure of organs like the liver and brain to 64Cu. IMPACT AND IMPLICATIONS: Bis-choline tetrathiomolybdate (TTM) is an investigational copper chelator being developed for the treatment of Wilson disease. In animal models of Wilson disease, TTM has been shown to facilitate biliary copper excretion. In the present human study, TTM surprisingly did not facilitate biliary copper excretion but instead reduced intestinal copper uptake to a clinically significant degree. Our study builds on our understanding of human copper metabolism and the mechanism of action of TTM.
Assuntos
Degeneração Hepatolenticular , Molibdênio , Animais , Humanos , Degeneração Hepatolenticular/tratamento farmacológico , Degeneração Hepatolenticular/metabolismo , Cobre/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Voluntários Saudáveis , Quelantes/farmacologia , ColinaRESUMO
BACKGROUND AND AIMS: Wilson's disease (WD) is a genetic disease with systemic accumulation of copper that leads to symptoms from the liver and brain. However, the underlying defects in copper transport kinetics are only partly understood. We sought to quantify hepatic copper turnover in patients with WD compared with heterozygote and control subjects using PET with copper-64 (64 Cu) as a tracer. Furthermore, we assessed the diagnostic potential of the method. APPROACH AND RESULTS: Nine patients with WD, 5 healthy heterozygote subjects, and 8 healthy controls were injected with an i.v. bolus of 64 Cu followed by a 90-min dynamic PET scan of the liver and static whole-body PET/CT scans after 1.5, 6, and 20 h. Blood 64 Cu concentrations were measured in parallel. Hepatic copper retention and redistribution were evaluated by standardized uptake values (SUVs). At 90 min, hepatic SUVs were similar in the three groups. In contrast, at 20 h postinjection, the SUV in WD patients (mean ± SEM, 31 ± 4) was higher than in heterozygotes (24 ± 3) and controls (21 ± 4; p < 0.001). An SUV-ratio of hepatic 64 Cu concentration at 20 and 1.5 h completely discriminated between WD patients and control groups (p < 0.0001; ANOVA). By Patlak analysis of the initial 90 min of the PET scan, the steady-state hepatic clearance of 64 Cu was estimated to be slightly lower in patients with WD than in controls (p = 0.04). CONCLUSIONS: 64 Cu PET imaging enables visualization and quantification of the hepatic copper retention characteristic for WD patients. This method represents a valuable tool for future studies of WD pathophysiology, and may assist the development of therapies, and accurate diagnosis.
Assuntos
Degeneração Hepatolenticular , Degeneração Hepatolenticular/diagnóstico por imagem , Degeneração Hepatolenticular/genética , Heterozigoto , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Tomografia por Emissão de PósitronsRESUMO
BACKGROUND: Coincidental extracardiac findings with increased perfusion were reported during myocardial perfusion imaging (MPI) with various retention radiotracers. Clinical parametric O-15-H2O PET MPI yielding quantitative measures of myocardial blood flow (MBF) was recently implemented at our facility. We aim to explore whether similar extracardiac findings are observed using O-15-H2O. METHODS AND RESULTS: All patients (2963) were scanned with O-15-H2O PET MPI according to international guidelines and extracardiac findings were collected. In contrast to parametric O-15-H2O MBF images, extracardiac perfusion was assessed using summed images. Biopsy histopathology and other imaging modalities served as reference standards. Various malignant lesions with increased perfusion were detected, including lymphomas, large-celled neuroendocrine tumour, breast, and lung cancer plus metastases from colonic and renal cell carcinomas. Furthermore, inflammatory and hyperplastic benign conditions with increased perfusion were observed: rib fractures, gynecomastia, atelectasis, sarcoidosis, pneumonia, chronic lung inflammation and fibrosis, benign lung nodule, chronic diffuse lung infiltrates, pleural plaques and COVID-19 infiltrates. CONCLUSIONS: Malignant and benign extracardiac coincidental findings with increased perfusion are readily visible and frequently seen on O-15-H2O PET MPI. We recommend evaluating the summed O-15-H2O PET images in addition to the low-dose CT attenuation images.
Assuntos
COVID-19 , Imagem de Perfusão do Miocárdio , Masculino , Humanos , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Imagem de Perfusão do Miocárdio/métodos , Perfusão , Tomografia por Emissão de Pósitrons/métodosRESUMO
The lipolytic effects of growth hormone (GH) have been known for half a century and play an important physiological role for substrate metabolism during fasting. In addition, sustained GH-induced lipolysis is causally linked to insulin resistance. However, the underlying molecular mechanisms remain elusive. In the present study, we obtained experimental data in human subjects and used human adipose-derived stromal vascular cells (hADSCs) as a model system to elucidate GH-triggered molecular signaling that stimulates adipose tissue lipolysis and insulin resistance in human adipocytes. We discovered that GH downregulates the expression of fat-specific protein (FSP27), a negative regulator of lipolysis, by impairing the transcriptional ability of the master transcriptional regulator, peroxisome proliferator-activated receptor-γ (PPARγ) via MEK/ERK activation. Ultimately, GH treatment promotes phosphorylation of PPARγ at Ser273 and causes its translocation from nucleus to the cytosol. Surprisingly, FSP27 overexpression inhibited PPARγ Ser273 phosphorylation and promoted its nuclear retention. GH antagonist treatment had similar effects. Our study identifies a novel signaling mechanism by which GH transcriptionally induces lipolysis via the MEK/ERK pathway that acts along PPARγ-FSP27 in human adipose tissue.
Assuntos
Adipócitos Brancos/metabolismo , Hormônio do Crescimento Humano/metabolismo , Lipólise/genética , Sistema de Sinalização das MAP Quinases , PPAR gama/metabolismo , Proteínas/genética , Proteínas Reguladoras de Apoptose , Regulação da Expressão Gênica , Humanos , Técnicas In Vitro , Masculino , Fosforilação , Proteínas/metabolismo , Adulto JovemRESUMO
AIMS: Metformin is first-line treatment of type 2 diabetes mellitus and reduces cardiovascular events in patients with insulin resistance and type 2 diabetes. Target tissue for metformin action is thought to be the liver, where metformin distribution depends on facilitated transport by polyspecific transmembrane organic cation transporters (OCTs). Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease in the western world with strong associations to insulin resistance and the metabolic syndrome, but whether NAFLD affects metformin biodistribution to the liver is not known. In this study, the primary aim was to investigate in vivo hepatic uptake of metformin dynamically in humans with variable degrees of liver affection. As a secondary aim, we wished to correlate hepatic metformin distribution with OCT gene transcription determined in diagnostic liver biopsies. METHODS: Eighteen patients with biopsy-proven NAFLD were investigated using 11C-metformin PET/CT technique. Gene transcripts of OCTs were determined by real-time polymerase chain reaction (PCR). RESULTS: We observed similar hepatic volume of distribution of metformin between patients with simple steatosis and non-alcoholic steatohepatitis (NASH) (Vd 2.38 ± 0.56 vs. 2.10 ± 0.39, P = 0.3). There was no association between hepatic exposure to metformin and the degree of inflammation or fibrosis, and no clear correlation between metformin distribution and OCT gene transcription. CONCLUSION: Metformin is distributed to the liver in patients with NAFLD and the distribution is not impaired by inflammation or fibrosis. The findings imply that metformin action in liver in patients with NAFLD may be preserved.
Assuntos
Diabetes Mellitus Tipo 2/tratamento farmacológico , Hipoglicemiantes/farmacocinética , Fígado/metabolismo , Metformina/farmacocinética , Hepatopatia Gordurosa não Alcoólica/metabolismo , Adulto , Idoso , Biópsia , Radioisótopos de Carbono , Diabetes Mellitus Tipo 2/etiologia , Feminino , Perfilação da Expressão Gênica , Humanos , Hipoglicemiantes/administração & dosagem , Fígado/patologia , Masculino , Metformina/administração & dosagem , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/diagnóstico , Hepatopatia Gordurosa não Alcoólica/patologia , Proteínas de Transporte de Cátions Orgânicos/genética , Proteínas de Transporte de Cátions Orgânicos/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Distribuição TecidualRESUMO
INTRODUCTION: In this study we investigated the impact of whey protein hydrolysate and maltodextrin (WPH) intake on intramuscular connective tissue (IMCT) protein fractional synthesis rate (FSR) after maximal shortening and lengthening contractions. METHODS: Twenty young men were randomized to receive either WPH or maltodextrin [carbohydrate (CHO)] immediately after completion of unilateral shortening and lengthening knee extensions. Ring-13 C6 -phenylalanine was infused, and muscle biopsies were obtained. IMCT protein FSR was measured at 1-5, as well as 1-3 and 3-5 hours after contractions and nutrient intake. RESULTS: During the 1-3-hour recovery, lengthening contractions resulted in a higher FSR than shortening contractions (P < 0.01), independent of supplementation type and, during the 3-5-hour recovery, WPH had a higher FSR than CHO (P < 0.05), independent of prior contraction mode. CONCLUSIONS: The later appearance of a stimulating effect of WPH on the IMCT FSR after strenuous muscle contractions lends support to its ability to promote recovery of the muscle connective tissue matrix after exercise. Muscle Nerve 55: 128-130, 2017.
Assuntos
Tecido Conjuntivo/efeitos dos fármacos , Tecido Conjuntivo/metabolismo , Músculo Esquelético/citologia , Polissacarídeos/farmacologia , Proteínas do Soro do Leite/biossíntese , Adulto , Análise de Variância , Lateralidade Funcional , Humanos , Masculino , Contração Muscular/fisiologia , Proteínas Musculares/metabolismo , Fenilalanina , Proteínas do Soro do Leite/metabolismo , Adulto JovemRESUMO
Increased availability of lipids may conserve muscle protein during catabolic stress. Our study was designed to define 1) intracellular mechanisms leading to increased lipolysis and 2) whether this scenario is associated with decreased amino acid and urea fluxes, and decreased muscle amino acid release in obese subjects under basal and fasting conditions. We therefore studied nine lean and nine obese subjects twice, after 12 and 72 h of fasting, using measurements of mRNA and protein expression and phosphorylation of lipolytic and protein metabolic signaling molecules in fat and muscle together with whole body and forearm tracer techniques. Obese subjects displayed increased whole body lipolysis, decreased urea production rates, and decreased forearm muscle protein breakdown per 100 ml of forearm tissue, differences that persisted after 72 h of fasting. Lipolysis per fat mass unit was reduced in obese subjects and, correspondingly, adipose tissue hormone-sensitive lipase (HSL) phosphorylation and mRNA and protein levels of the adipose triglyceride lipase (ATGL) coactivator CGI58 were decreased. Fasting resulted in higher HSL phosphorylations and lower protein levels of the ATGL inhibitor G0S2. Muscle protein expressions of mammalian target of rapamycin (mTOR) and 4EBP1 were lower in obese subjects, and MuRf1 mRNA was higher with fasting in lean but not obese subjects. Phosphorylation and signaling of mTOR decreased with fasting in both groups, whereas ULK1 protein and mRNA levels increased. In summary, obese subjects exhibit increased lipolysis due to a large fat mass with blunted prolipolytic signaling, together with decreased urea and amino acid fluxes both in the basal and 72-h fasted state; this is compatible with preservation of muscle and whole body protein.
Assuntos
Jejum/metabolismo , Metabolismo dos Lipídeos/genética , Lipólise/genética , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Obesidade/genética , RNA Mensageiro/metabolismo , 1-Acilglicerol-3-Fosfato O-Aciltransferase/genética , 1-Acilglicerol-3-Fosfato O-Aciltransferase/metabolismo , Tecido Adiposo/metabolismo , Adulto , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/genética , Proteína Homóloga à Proteína-1 Relacionada à Autofagia/metabolismo , Estudos de Casos e Controles , Proteínas de Ciclo Celular/metabolismo , Estudos Cross-Over , Antebraço , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Lipase/genética , Lipase/metabolismo , Masculino , Obesidade/metabolismo , Fosforilação , Esterol Esterase/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Fatores de Tempo , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Ureia/metabolismo , Adulto JovemRESUMO
Greater force produced with eccentric (ECC) compared to concentric (CONC) contractions, may comprise a stronger driver of muscle growth, which may be further augmented by protein supplementation. We investigated the effect of differentiated contraction mode with either whey protein hydrolysate and carbohydrate (WPH + CHO) or isocaloric carbohydrate (CHO) supplementation on regulation of anabolic signalling, muscle protein synthesis (MPS) and muscle hypertrophy. Twenty-four human participants performed unilateral isolated maximal ECC versus CONC contractions during exercise habituation, single-bout exercise and 12 weeks of training combined with WPH + CHO or CHO supplements. In the exercise-habituated state, p-mTOR, p-p70S6K, p-rpS6 increased by approximately 42, 206 and 213 %, respectively, at 1 h post-exercise, with resistance exercise per se; whereas, the phosphorylation was exclusively maintained with ECC at 3 and 5 h post-exercise. This acute anabolic signalling response did not differ between the isocaloric supplement types, neither did protein fractional synthesis rate differ between interventions. Twelve weeks of ECC as well as CONC resistance training augmented hypertrophy with WPH + CHO group compared to the CHO group (7.3 ± 1.0 versus 3.4 ± 0.8 %), independently of exercise contraction type. Training did not produce major changes in basal levels of Akt-mTOR pathway components. In conclusion, maximal ECC contraction mode may constitute a superior driver of acute anabolic signalling that may not be mirrored in the muscle protein synthesis rate. Furthermore, with prolonged high-volume resistance training, contraction mode seems less influential on the magnitude of muscle hypertrophy, whereas protein and carbohydrate supplementation augments muscle hypertrophy as compared to isocaloric carbohydrate supplementation .
Assuntos
Suplementos Nutricionais , Proteínas do Leite/administração & dosagem , Contração Muscular , Desenvolvimento Muscular , Proteínas Musculares/biossíntese , Músculo Esquelético/metabolismo , Treinamento Resistido , Adulto , Dinamarca , Carboidratos da Dieta/administração & dosagem , Método Duplo-Cego , Metabolismo Energético , Exercício Físico , Humanos , Masculino , Fosforilação , Processamento de Proteína Pós-Traducional , Transdução de Sinais , Proteínas do Soro do Leite , Adulto JovemRESUMO
The aim was to establish combined H215O PET/MRI during ex vivo normothermic machine perfusion (NMP) of isolated porcine kidneys. We examined whether changes in renal arterial blood flow (RABF) are accompanied by changes of a similar magnitude in renal blood perfusion (RBP) as well as the relation between RBP and renal parenchymal oxygenation (RPO). METHODS: Pig kidneys (n = 7) were connected to a NMP circuit. PET/MRI was performed at two different pump flow levels: a blood-oxygenation-level-dependent (BOLD) MRI sequence performed simultaneously with a H215O PET sequence for determination of RBP. RESULTS: RBP was measured using H215O PET in all kidneys (flow 1: 0.42-0.76 mL/min/g, flow 2: 0.7-1.6 mL/min/g). We found a linear correlation between changes in delivered blood flow from the perfusion pump and changes in the measured RBP using PET imaging (r2 = 0.87). CONCLUSION: Our study demonstrated the feasibility of combined H215O PET/MRI during NMP of isolated porcine kidneys with tissue oxygenation being stable over time. The introduction of H215O PET/MRI in nephrological research could be highly relevant for future pre-transplant kidney evaluation and as a tool for studying renal physiology in healthy and diseased kidneys.
RESUMO
BACKGROUND: Accurate diagnosis of axillary lymph node (ALN) metastases is essential for prognosis and treatment planning in breast cancer. Evaluation of ALN is done by ultrasound, which is limited by inter-operator variability, and by sentinel lymph node biopsy and/or ALN dissection, none of which are without risks and/or long-term complications. It is known that conventional 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) positron emission tomography/computed tomography (PET/CT) has limited sensitivity for ALN metastases. However, a recently developed dynamic whole-body (D-WB) [18F]FDG PET/CT scanning protocol, allowing for imaging of tissue [18F]FDG metabolic rate (MRFDG), has been shown to have the potential to increase lesion detectability. The study purpose was to examine detectability of malignant lesions in D-WB [18F]FDG PET/CT compared to conventional [18F]FDG PET/CT. RESULTS: This study prospectively included ten women with locally advanced breast cancer who were referred for an [18F]FDG PET/CT as part of their diagnostic work-up. They all underwent D-WB [18F]FDG PET/CT, consisting of a 6 min single bed dynamic scan over the chest region started at the time of tracer injection, a 64 min dynamic WB PET scan consisting of 16 continuous bed motion passes, and finally a contrast-enhanced CT scan, with generation of MRFDG parametric images. Lesion visibility was assessed by tumor-to-background and contrast-to-noise ratios using volumes of interest isocontouring tumors with a set limit of 50% of SUVmax and background volumes placed in the vicinity of tumors. Lesion visibility was best in the MRFDG images, with target-to-background values 2.28 (95% CI: 2.04-2.54) times higher than target-to-background values in SUV images, and contrast-to-noise values 1.23 (95% CI: 1.12-1.35) times higher than contrast-to-noise values in SUV images. Furthermore, five imaging experts visually assessed the images and three additional suspicious lesions were found in the MRFDG images compared to SUV images; one suspicious ALN, one suspicious parasternal lymph node, and one suspicious lesion located in the pelvic bone. CONCLUSIONS: D-WB [18F]FDG PET/CT with MRFDG images show potential for improved lesion detectability compared to conventional SUV images in locally advanced breast cancer. Further validation in larger cohorts is needed. CLINICAL TRIAL REGISTRATION: The trial is registered in clinicaltrials.gov, NCT05110443, https://www. CLINICALTRIALS: gov/study/NCT05110443?term=NCT05110443&rank=1 .
RESUMO
Growth hormone (GH) acutely stimulates lipolysis and fat oxidation, a process that operates postabsorptively and involves activation of the JAK-STAT pathway in the target tissue; no in vivo data exist regarding subsequent GH-regulated gene transcription. We obtained serum samples and muscle biopsies in human subjects before and 2 h after administration of a GH bolus. A significant (~75%) elevation in serum FFA levels was recorded post GH. Microarray identified 79 GH-regulated genes in muscle. With qRT-PCR, we then examined the expression of selected genes in the presence and absence of glucose-induced suppression of lipolysis. Four genes involved in the JAK-STAT5 signaling pathway were regulated by GH, including SOCS1-3 and CISH, in addition to three genes associated with insulin action: NFκB1A, PIK3C2B, and PRKAG2. The gene encoding ANGPTL4, a protein involved in lipolysis and suppression of LPL activity, exhibited the most pronounced upregulation (5.6-fold) after GH, which was abrogated by concomitant suppression of lipolysis. Therefore, the GH-induced stimulation of ANGPTL4 gene expression seems secondary to induction of lipolysis. This new concept implies that abundant supply of circulating FFA decreases the need for alternative triglyceride-derived FFA through distinct inhibition of LPL mediated by increased ANGPTL4 gene expression in human muscle.
Assuntos
Angiopoietinas/metabolismo , Hormônio do Crescimento/administração & dosagem , Hormônio do Crescimento/farmacologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Administração Intravenosa , Proteína 4 Semelhante a Angiopoietina , Angiopoietinas/genética , Células Cultivadas , Perfilação da Expressão Gênica , Humanos , Reação em Cadeia da Polimerase em Tempo RealRESUMO
The mammalian target of rapamycin complex 1 (mTORC1) is considered an important role in the muscular adaptations to exercise. It has been proposed that exercise-induced signaling to mTORC1 do not require classic growth factor PI3K/Akt signaling. Activation of IKKß and the mitogen-activated protein kinases (MAPKs) Erk1/2 and p38 has been suggested to link inflammation and cellular stress to activation of mTORC1 through the tuberous sclerosis 1 (TSC1)/tuberous sclerosis 2 (TSC2) complex. Consequently, activation of these proteins constitutes potential alternative mechanisms of mTORC1 activation following exercise. Previously, we demonstrated that mTOR is preferentially activated in response to resistance exercise compared to endurance exercise in trained individuals without concomitant activation of Akt. In the present study, we extended this investigation by examining IκB kinase complex (IKK), TSC1, MAPK, and upstream Akt activators, along with gene expression of selected cytokines, in skeletal muscles from these subjects. Biopsies were sampled prior to, immediately after, and in the recovery period following resistance exercise, endurance exercise, and control interventions. The major finding was that IKKß phosphorylation increased exclusively after resistance exercise. No changes in TSC1, Erk1/2, insulin receptor, or insulin receptor substrate 1 phosphorylation were observed in any of the groups, while p38 phosphorylation was higher in the resistance exercise group compared to both other groups immediately after the intervention. Resistance and endurance exercise increased IL6, IL8, and TNFα gene expression immediately after exercise. The non-exercise control group demonstrated that cytokine gene expression is also sensitive to repeated biopsy sampling, whereas no effect of repeated biopsy sampling on protein expression and phosphorylation was observed. In conclusion, resistance exercise, but not endurance exercise, increases IKKß phosphorylation in trained human subjects, which support the idea that IKKß can influence the activation of mTORC1 in human skeletal muscle.
Assuntos
Exercício Físico/fisiologia , Quinase I-kappa B/metabolismo , Resistência Física/fisiologia , Treinamento Resistido , Humanos , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Alvo Mecanístico do Complexo 1 de Rapamicina , Complexos Multiproteicos , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/fisiologia , Serina-Treonina Quinases TOR , Proteína 1 do Complexo Esclerose Tuberosa , Proteínas Supressoras de Tumor , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismoRESUMO
Non-invasive liquid biopsy assays for blood-circulating biomarkers of cancer allow both its early diagnosis and treatment monitoring. Here, we assessed serum levels of protein HER-2/neu, overexpressed in a number of aggressive cancers, by the cellulase-linked sandwich bioassay on magnetic beads. Instead of traditional antibodies we used inexpensive reporter and capture aptamer sequences, transforming the enzyme-linked immuno-sorbent assay (ELISA) into an enzyme-linked aptamer-sorbent assay (ELASA). The reporter aptamer was conjugated to cellulase, whose digestion of nitrocellulose film electrodes resulted in the electrochemical signal change. ELASA, optimized relative aptamer lengths (dimer vs monomer and trimer), and assay steps allowed 0.1 fM detection of HER-2/neu in the 10% human serum in 1.3 h. Urokinase plasminogen activator and thrombin as well as human serum albumin did not interfere, and liquid biopsy analysis of serum HER-2/neu was similarly robust but 4 times faster and 300 times cheaper than both electrochemical and optical ELISA. Simplicity and low cost of cellulase-linked ELASA makes it a perspective diagnostic tool for fast and accurate liquid biopsy detection of HER-2/neu and of other proteins for which aptamers are available.
RESUMO
Sarcomas are rare and have a high mortality rate. Further prognostic classification, with readily available parameters, is warranted, and several studies have examined circulating biomarkers and PET parameters separately. This single-site, retrospective study aimed to examine the prognostic values of several scoring systems in combination with PET parameters. We included 148 patients with sarcoma, who were treated and scanned at Aarhus University Hospital from 1 January 2016 to 31 December 2019. The Akaike information criterion and Harrell's concordance index were used to evaluate whether the PET parameters added prognostic information to existing prognostic models using circulating biomarkers. Of the PET parameters, metabolic tumor volume (MTV) performed best, and when combined with the existing prognostic models, the prognostic value improved in all models. Backward stepwise selection was used to create a new model, SBSpib, which included albumin, lymphocytes, and one PET parameter, MTV. It has scores ranging from zero to three and increasing hazard ratios; HR = 4.83 (1.02-22.75) for group one, HR = 7.40 (1.6-33.42) for group two, and HR = 17.32 (3.45-86.93) for group three. Consequently, implementing PET parameters in prognostic models improved the prognostic value. SBSpib is a new prognostic model that includes both circulating biomarkers and PET parameters; however, validation in another sarcoma cohort is warranted.
RESUMO
Background & Aims: In Wilson disease (WD), copper accumulation and increased non-ceruloplasmin-bound copper in plasma lead to liver and brain pathology. To better understand the fate of non-ceruloplasmin-bound copper, we used PET/CT to examine the whole-body distribution of intravenously injected 64-copper (64Cu). Methods: Eight patients with WD, five heterozygotes, and nine healthy controls were examined by dynamic PET/CT for 90 min and static PET/CT up to 20 h after injection. We measured 64Cu activity in blood and tissue and quantified the kinetics by compartmental analysis. Results: Initially, a large fraction of injected 64Cu was distributed to extrahepatic tissues, especially skeletal muscle. Thus, across groups, extrahepatic tissues accounted for 45-58% of the injected dose (%ID) after 10 min, and 45-55% after 1 h. Kinetic analysis showed rapid exchange of 64Cu between blood and muscle as well as adipose tissue, with 64Cu retention in a secondary compartment, possibly mitochondria. This way, muscle and adipose tissue may protect the brain from spikes in non-ceruloplasmin-bound copper. Tiny amounts of cerebral 64Cu were detected (0.2%ID after 90 min and 0.3%ID after 6 h), suggesting tight control of cerebral copper in accordance with a cerebral clearance that is 2-3-fold lower than in muscle. Compared to controls, patients with WD accumulated more hepatic copper 6-20 h after injection, and also renal copper at 6 h. Conclusion: Non-ceruloplasmin-bound copper is initially distributed into a number of tissues before being redistributed slowly to the eliminating organ, the liver. Cerebral uptake of copper is extremely slow and likely highly regulated. Our findings provide new insights into the mechanisms of copper control. Impact and implications: Maintaining non-ceruloplasmin-bound copper within the normal range is an important treatment goal in WD as this "free" copper is considered toxic to the liver and brain. We found that intravenously injected non-ceruloplasmin-bound copper quickly distributed to a number of tissues, especially skeletal muscle, subcutaneous fat, and the liver, while uptake into the brain was slow. This study offers new insights into the mechanisms of copper control, which may encourage further research into potential new treatment targets. Clinical trial number: 2016-001975-59.
RESUMO
Brain death is the complete, irreversible cessation of brain function, including the capacity for brainstem, respiratory, and vegetative activities. It is a clinical diagnosis that can be supplemented with brain perfusion imaging. Absent cerebral blood flow can be visualized with CT angiography or perfusion scintigraphy. F-FDG PET/CT, visualizing glucose uptake, is another approach that has been shown to indicate brain death in small case series. We here present a case with unsuspected absent F-FDG uptake and thus no metabolic activity, in the brain. The patient was declared brain dead later the same day.
Assuntos
Morte Encefálica/diagnóstico por imagem , Morte Encefálica/metabolismo , Encéfalo/diagnóstico por imagem , Encéfalo/metabolismo , Fluordesoxiglucose F18/metabolismo , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Transporte Biológico , HumanosRESUMO
Immobilization of the lower limbs promotes a catabolic state that reduces muscle mass, whereas physical training promotes an anabolic state that increases muscle mass. Understanding the molecular mechanisms underlying this is of clinical interest, as loss of muscle mass is a major complication to critical illness in humans. To determine the molecular regulation of protein synthesis and degradation during muscle loss and hypertrophy, we examined skeletal muscle biopsies from healthy human subjects after 2 weeks unilateral immobilization of a lower limb and during 6 weeks of physical rehabilitation. We have previously shown that cross-sectional area of the knee muscle-extensors decreased by â¼10% during immobilization and was completely restored during rehabilitation. Here we provide novel data to suggest that autophagy is an important underlying mechanism involved in regulation of muscle mass. Protein expression of MuRF1 and ATROGIN-1 did not change during the study, indicating that the recruitment of substrates to the proteasomes was unaltered. Phosphorylation of mTORat Ser2448 did not change during the study, and neither did phosphorylation of the mTORC1 substrates 4EBP1 Thr37/46 and p70S6K Thr389, suggesting that this pathway does not suppress protein synthesis during muscle wasting. Protein levels of p62 and ULK1 increased during immobilization and returned to baseline levels during rehabilitation. Same pattern was observed for FOXO3a phosphorylation at Ser318/321, suggesting transcriptional activation during immobilization and inactivation during rehabilitation. To investigate this further, we analyzed mRNA expression of seven autophagy-related genes controlled by FOXO3a. Five of these (p62, LC3B, BECLIN-1, ATG12, and BNIP3) increased during immobilization and returned to baseline during rehabilitation. In conclusion, immobilization of a lower limb increases autophagy-related gene and protein expression in human skeletal muscle in a pattern that mirrors FOXO3a phosphorylation. These findings could imply that FOXO3a dependent transcriptional regulation of autophagy is involved in the regulation of muscle mass in humans. CLINICAL TRIAL REGISTRATION: The study was approved by the Ethics Committee of Copenhagen (j.no. H-1-2010-016).
RESUMO
Background: While metformin is the first-line pharmacological treatment of diabetes mellitus type 2, this drug is not considered safe to use in pregnant women because of its unknown consequences for the fetus. In this study, we aimed to investigate the biodistribution of metformin in the pregnant chinchilla, a species exhibiting placental characteristics comparable with the pregnant woman. Furthermore, we aimed to investigate the expression of metformin transporters in humans and chinchillas, respectively, in order to evaluate the pregnant chinchilla as a novel animal model for the use of metformin in pregnancy. Methods: Three chinchillas in the last part of gestation were injected with [11C]-metformin and scanned by PET/CT for 70 minutes to visualize the distribution. To investigate the difference in expression of placenta transporters between humans and chinchillas, PCR was performed on samples from five chinchilla placentae and seven human placentae. Results: Dynamic PET with [11C]-metformin showed that the metformin distribution in chinchillas was similar to that in nonpregnant humans, with signal from kidneys, liver, bladder, and submandibular glands. Conversely, no radioactive signal was observed from the fetuses, and no metformin was accumulated in the chinchilla fetus when measuring the SUV. PCR of placental mRNA showed that the human placentae expressed OCT3, whereas the chinchilla placentae expressed OCT1. Conclusion: Since metformin did not pass the placenta barrier in the pregnant chinchilla, as it is known to do in humans, we do not suggest the chinchilla as a future animal model of metformin in pregnancies.
Assuntos
Proteínas de Membrana Transportadoras/genética , Metformina/farmacologia , Placenta/diagnóstico por imagem , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada/métodos , Animais , Radioisótopos de Carbono/farmacologia , Chinchila/genética , Chinchila/fisiologia , Feminino , Humanos , Fígado/diagnóstico por imagem , Fígado/efeitos dos fármacos , Metformina/metabolismo , Placenta/metabolismo , Gravidez , RNA Mensageiro/genética , Distribuição Tecidual/genéticaRESUMO
Prostate cancer cells have abundant expression of the cell surface protein prostate-specific membrane antigen (PSMA). In recent years, PET radioligands detecting this protein has therefore gained substantial interest in prostate cancer staging. It turned out that PSMA expression can be evident in both malignant and benign lesions, and we have previously reported that pulmonary opacities and bronchiectasis can be avid on Ga-PSMA PET/CT. Here, we present a case with Ga-PSMA accumulation in nonobstructive middle lobe syndrome, which further indicate that benign changes in the lungs may be falsely interpreted as malignant disease.