Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
Inorg Chem ; 62(40): 16323-16328, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37755155

RESUMO

In this study, we report the easy and low-cost synthesis of calcium niobate (CaNb2O6) with the isomorphic structure of the Rynersonite mineral for CaTa2O6. The samples were prepared by the ball milling method at room temperature at a synthesis time of 0.5, 1, 2, 3, and 4 h. The structural analysis by XRD, Rietveld refinement, and vibrational Raman spectroscopy confirms all diffraction peaks and active mode characteristics of the pure phase of CaNb2O6 for the 3-h and 4-h samples, with a crystallite size of 22.5 and 23.2 nm, respectively. The optical band gap obtained was 3.18(2) eV (3-h sample), lower than the optical band gap for niobium oxide, characteristic of materials with strong photon absorption in the UVA region of the spectrum. The surface analysis by scanning electron microscopy reveals the obtention of several agglomerates of irregular particles ranging in the submicro and micro scales. Therefore, the present approach successfully obtained calcium niobate with the formula CaNb2O6 at a short synthesis time and room temperature.

2.
Emerg Infect Dis ; 27(2): 430-442, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33496227

RESUMO

Severe malaria (SM) is a major public health problem in malaria-endemic countries. Sequestration of Plasmodium falciparum-infected erythrocytes in vital organs and the associated inflammation leads to organ dysfunction. MicroRNAs (miRNAs), which are rapidly released from damaged tissues into the host fluids, constitute a promising biomarker for the prognosis of SM. We applied next-generation sequencing to evaluate the differential expression of miRNAs in SM and in uncomplicated malaria (UM) in children in Mozambique. Six miRNAs were associated with in vitro P. falciparum cytoadhesion, severity in children, and P. falciparum biomass. Relative expression of hsa-miR-4497 quantified by TaqMan-quantitative reverse transcription PCR was higher in plasma of children with SM than those with UM (p<0.048) and again correlated with P. falciparum biomass (p = 0.033). These findings suggest that different physiopathological processes in SM and UM lead to differential expression of miRNAs and suggest a pathway for assessing their prognostic value malaria.


Assuntos
Malária Falciparum , Malária , MicroRNAs , Biomassa , Criança , Humanos , MicroRNAs/genética , Moçambique , Plasmodium falciparum/genética
3.
Malar J ; 19(1): 12, 2020 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-31918718

RESUMO

BACKGROUND: Malaria diagnostics by rapid diagnostic test (RDT) relies primarily on the qualitative detection of Plasmodium falciparum histidine-rich protein 2 (PfHRP2) and Plasmodium spp lactate dehydrogenase (pLDH). As novel RDTs with increased sensitivity are being developed and implemented as point of care diagnostics, highly sensitive laboratory-based assays are needed for evaluating RDT performance. Here, a quantitative suspension array technology (qSAT) was developed, validated and applied for the simultaneous detection of PfHRP2 and pLDH in a variety of biological samples (whole blood, plasma and dried blood spots) from individuals living in different endemic countries. RESULTS: The qSAT was specific for the target antigens, with analytical ranges of 6.8 to 762.8 pg/ml for PfHRP2 and 78.1 to 17076.6 pg/ml for P. falciparum LDH (Pf-LDH). The assay detected Plasmodium vivax LDH (Pv-LDH) at a lower sensitivity than Pf-LDH (analytical range of 1093.20 to 187288.5 pg/ml). Both PfHRP2 and pLDH levels determined using the qSAT showed to positively correlate with parasite densities determined by quantitative PCR (Spearman r = 0.59 and 0.75, respectively) as well as microscopy (Spearman r = 0.40 and 0.75, respectively), suggesting the assay to be a good predictor of parasite density. CONCLUSION: This immunoassay can be used as a reference test for the detection and quantification of PfHRP2 and pLDH, and could serve for external validation of RDT performance, to determine antigen persistence after parasite clearance, as well as a complementary tool to assess malaria burden in endemic settings.


Assuntos
Antígenos de Protozoários/sangue , L-Lactato Desidrogenase/sangue , Malária Falciparum/diagnóstico , Malária Vivax/diagnóstico , Proteínas de Protozoários/sangue , Adolescente , Adulto , África , Animais , Biotina , Calibragem , Criança , Estudos Transversais , Feminino , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Malária Falciparum/sangue , Malária Vivax/sangue , Camundongos , Microesferas , Parasitemia/sangue , Parasitemia/diagnóstico , Gravidez , Reação em Cadeia da Polimerase em Tempo Real , América do Sul , Espanha , Adulto Jovem
4.
Malar J ; 19(1): 188, 2020 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-32448310

RESUMO

BACKGROUND: While sub-microscopic malarial infections are frequent and potentially deleterious during pregnancy, routine molecular detection is still not feasible. This study aimed to assess the performance of a Histidine Rich Protein 2 (HRP2)-based ultrasensitive rapid diagnostic test (uRDT, Alere Malaria Ag Pf) for the detection of infections of low parasite density in pregnant women. METHODS: This was a retrospective study based on samples collected in Benin from 2014 to 2017. A total of 942 whole blood samples collected in 327 women in the 1st and 3rd trimesters and at delivery were tested by uRDT, conventional RDT (cRDT, SD BIOLINE Malaria Ag Pf), microscopy, quantitative polymerase chain-reaction (qPCR) and Luminex-based suspension array technology targeting P. falciparum HRP2. The performance of each RDT was evaluated using qPCR as reference standard. The association between infections detected by uRDT, but not by cRDT, with poor maternal and birth outcomes was assessed using multivariate regression models. RESULTS: The overall positivity rate detected by cRDT, uRDT, and qPCR was 11.6% (109/942), 16.2% (153/942) and 18.3% (172/942), respectively. Out of 172 qPCR-positive samples, 68 were uRDT-negative. uRDT had a significantly better sensitivity (60.5% [52.7-67.8]) than cRDT (44.2% [36.6-51.9]) and a marginally decreased specificity (93.6% [91.7-95.3] versus 95.7% [94.0-97.0]). The gain in sensitivity was particularly high (33%) and statistically significant in the 1st trimester. Only 28 (41%) out of the 68 samples which were qPCR-positive, but uRDT-negative had detectable but very low levels of HRP2 (191 ng/mL). Infections that were detected by uRDT but not by cRDT were associated with a 3.4-times (95%CI 1.29-9.19) increased risk of anaemia during pregnancy. CONCLUSIONS: This study demonstrates the higher performance of uRDT, as compared to cRDTs, to detect low parasite density P. falciparum infections during pregnancy, particularly in the 1st trimester. uRDT allowed the detection of infections associated with maternal anaemia.


Assuntos
Antígenos de Protozoários/análise , Testes Diagnósticos de Rotina/estatística & dados numéricos , Malária Falciparum/epidemiologia , Plasmodium falciparum/isolamento & purificação , Proteínas de Protozoários/análise , Adulto , Feminino , Humanos , Malária Falciparum/parasitologia , Gravidez , Prevalência , Estudos Retrospectivos , Sensibilidade e Especificidade , Adulto Jovem
6.
Reprod Biol Endocrinol ; 17(1): 76, 2019 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-31526391

RESUMO

BACKGROUND: Microarray-based and next generation sequencing (NGS) technologies have revealed that segmental aneuploidy is frequently present in human oocytes, cleavage-stage embryos and blastocysts. However, very little research has analyzed the type, size, chromosomal distribution and topography of the chromosomal segments at the different stages of development. METHODS: This is a retrospective study of 822 PGT-A (preimplantation genetic test for aneuploidies) performed on trophectoderm samples from 3565 blastocysts biopsied between January 2016 and April 2017. The cycles in question had been initiated for varying clinical indications. Samples were analyzed by next generation sequencing-based technology. Segmental aneuploidies were evaluated when fragment size was > 5 Mb. Blastocysts presenting a single segmental aneuploidy (SSA), without any additional whole-chromosome gain/loss, were statistically analyzed for incidence, type, size and chromosomal emplacement. Segment sizes relative to the whole chromosome or arm (chromosome- and arm-ratios) were also studied. RESULTS: 8.4% (299/3565) of blastocysts exhibited segmental aneuploidy for one or more chromosomes, some of which were associated with whole-chromosome aneuploidy while others were not. Nearly half of them (4.5%: 159/3565 of blastocysts) exhibited pure-SSA, meaning that a single chromosome was affected by a SSA. Segments were more frequent in medium-sized metacentric or submetacentric chromosomes and particularly in q-chrmosome arms, variables that were related to trophectoderm quality. SSA size was related to a greater extent to chromosome number and the arm affected than it was to SSA type. In absolute values (Mb), SSA size was larger in large chromosomes. However, the SSA:chromosome ratio was constant across all chromosomes and never exceeded 50% of the chromosome. CONCLUSIONS: SSA frequency is chromosome- and topographically dependent, and its incidence is not related to clinical or embryological factors, but rather to trophectoderm quality. SSA might be originated by chromosome instability in response to chromothripsis, bias introduced by the biopsy and/or iatrogenic effects. TRIAL REGISTRATION: Retrospectively registered.


Assuntos
Aneuploidia , Blastocisto/metabolismo , Testes Genéticos/métodos , Oócitos/metabolismo , Diagnóstico Pré-Implantação/métodos , Mapeamento Cromossômico/métodos , Feminino , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Gravidez , Estudos Retrospectivos
7.
J Assist Reprod Genet ; 36(3): 371-381, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30604135

RESUMO

PURPOSE: Fluorescence in situ hybridization (FISH) in spermatozoa provides an estimate of the frequency of chromosomal abnormalities, but there is not a clinical consensus on how to statistically analyze sperm FISH results. We therefore propose a statistical approach to establish sperm aneuploidy thresholds in a fertile population. METHODS: We have determined the distribution and variation of the frequency of nullisomy, disomy, and diploidy for a set of 13 chromosomes (1, 2, 9, 13, 15, 16, 17, 18, 19, 21, 22, X, and Y) in sperm nuclei from 14 fertile men by means of automatized FISH. The dispersion of data has been analyzed by the non-parametric Wilcoxon Rank Sum test. We have established the threshold values for each chromosome and aneuploidy type on the basis of the confidence interval values (99.9%). RESULTS: Nullisomy thresholds ranged from 0.49% for chromosome 19 to 3.09% for chromosome 22; disomy thresholds ranged from 0.30% for chromosome 21 to 1.47% for chromosome 15; diploidy thresholds ranged from 0.24% for the 9/19 chromosome set to 1.21% for the 13/21 chromosome set. CONCLUSIONS: Applying this approach with clinical purposes will enable us to categorize the patient as altered or normal regarding his sperm aneuploidy. Any result surpassing the cited threshold values indicates a 99.9% probability of being significantly different from fertile controls.


Assuntos
Núcleo Celular/genética , Aberrações Cromossômicas , Infertilidade Masculina/genética , Espermatozoides/patologia , Aneuploidia , Diploide , Humanos , Hibridização in Situ Fluorescente , Infertilidade Masculina/diagnóstico , Infertilidade Masculina/patologia , Masculino
8.
Reprod Biomed Online ; 28(4): 492-502, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24581602

RESUMO

Genetic and biochemical sperm integrity is essential to ensure the reproductive competence. However, spermatogenesis involves physiological changes that could endanger sperm integrity. DNA protamination and apoptosis have been studied extensively. Furthermore, elevated rates of aneuploidy and DNA injury correlate with reproductive failures. Consequently, this study applied the conventional spermiogram method in combination with molecular tests to assess genetic integrity in ejaculate from normozoospermic patients with implantation failure by retrospectively analysing aneuploidy (chromosomes 18, X, Y), DNA fragmentation, externalization of phosphatidylserine and mitochondrial membrane potential status before and after magnetic activated cell sorting (MACS). Aneuploid, apoptotic and DNA-injured spermatozoa decreased significantly after MACS. A positive correlation was detected between reduction of aneuploidy and decreased DNA damage, but no correlation was determined with apoptotic markers. The interactions between apoptotic markers, DNA integrity and aneuploidy, and the effect of MACS on these parameters, remain unknown. In conclusion, use of MACS reduced aneuploidy, DNA fragmentation and apoptosis. A postulated mechanism relating aneuploidy and DNA injury is discussed; on the contrary, cell death markers could not be related. An 'apoptotic-like' route could explain this situation.


Assuntos
Aneuploidia , Apoptose , Fragmentação do DNA , Espermatozoides/patologia , Adulto , Separação Celular/métodos , Centrifugação com Gradiente de Concentração , Cromossomos Humanos Par 18/genética , Cromossomos Humanos X/genética , Cromossomos Humanos Y/genética , Diploide , Humanos , Hibridização in Situ Fluorescente , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Espermatozoides/metabolismo
9.
Viruses ; 16(6)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38932190

RESUMO

Human coronavirus 229E (HCoV-229E) is associated with upper respiratory tract infections and generally causes mild respiratory symptoms. HCoV-229E infection can cause cell death, but the molecular pathways that lead to virus-induced cell death as well as the interplay between viral proteins and cellular cell death effectors remain poorly characterized for HCoV-229E. Studying how HCoV-229E and other common cold coronaviruses interact with and affect cell death pathways may help to understand its pathogenesis and compare it to that of highly pathogenic coronaviruses. Here, we report that the main protease (Mpro) of HCoV-229E can cleave gasdermin D (GSDMD) at two different sites (Q29 and Q193) within its active N-terminal domain to generate fragments that are now unable to cause pyroptosis, a form of lytic cell death normally executed by this protein. Despite GSDMD cleavage by HCoV-229E Mpro, we show that HCoV-229E infection still leads to lytic cell death. We demonstrate that during virus infection caspase-3 cleaves and activates gasdermin E (GSDME), another key executioner of pyroptosis. Accordingly, GSDME knockout cells show a significant decrease in lytic cell death upon virus infection. Finally, we show that HCoV-229E infection leads to increased lytic cell death levels in cells expressing a GSDMD mutant uncleavable by Mpro (GSDMD Q29A+Q193A). We conclude that GSDMD is inactivated by Mpro during HCoV-229E infection, preventing GSDMD-mediated cell death, and point to the caspase-3/GSDME axis as an important player in the execution of virus-induced cell death. In the context of similar reported findings for highly pathogenic coronaviruses, our results suggest that these mechanisms do not contribute to differences in pathogenicity among coronaviruses. Nonetheless, understanding the interactions of common cold-associated coronaviruses and their proteins with the programmed cell death machineries may lead to new clues for coronavirus control strategies.


Assuntos
Morte Celular , Coronavirus Humano 229E , Peptídeos e Proteínas de Sinalização Intracelular , Proteínas de Ligação a Fosfato , Piroptose , Humanos , Proteínas de Ligação a Fosfato/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Coronavirus Humano 229E/fisiologia , Coronavirus Humano 229E/genética , Infecções por Coronavirus/virologia , Infecções por Coronavirus/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas de Neoplasias/genética , Proteínas Virais/metabolismo , Proteínas Virais/genética , Linhagem Celular , Interações Hospedeiro-Patógeno , Células HEK293 , Gasderminas
10.
Viruses ; 16(2)2024 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-38400032

RESUMO

Mitochondrial antiviral signaling protein (MAVS) is a crucial signaling adaptor in the sensing of positive-sense RNA viruses and the subsequent induction of the innate immune response. Coronaviruses have evolved multiple mechanisms to evade this response, amongst others, through their main protease (Mpro), which is responsible for the proteolytic cleavage of the largest part of the viral replicase polyproteins pp1a and pp1ab. Additionally, it can cleave cellular substrates, such as innate immune signaling factors, to dampen the immune response. Here, we show that MAVS is cleaved in cells infected with Middle East respiratory syndrome coronavirus (MERS-CoV), but not in cells infected with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This cleavage was independent of cellular negative feedback mechanisms that regulate MAVS activation. Furthermore, MERS-CoV Mpro expression induced MAVS cleavage upon overexpression and suppressed the activation of the interferon-ß (IFN-ß) and nuclear factor-κB (NF-κB) response. We conclude that we have uncovered a novel mechanism by which MERS-CoV downregulates the innate immune response, which is not observed among other highly pathogenic coronaviruses.


Assuntos
Coronavírus da Síndrome Respiratória do Oriente Médio , Imunidade Inata , Interferon beta/metabolismo , Peptídeo Hidrolases , Antivirais
11.
Fertil Steril ; 119(4): 675-687, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36563838

RESUMO

OBJECTIVE: To unravel the differential transcriptomic behavior of human androgenotes (AGs) and parthenogenotes (PGs) throughout the first cell cycles, analyze the differential expression of genes related to key biologic processes, and determine the time frame for embryonic genome activation (EGA) in AGs and PGs. DESIGN: Laboratory study. SETTING: Private fertility clinic. PATIENT(S): Mature oocytes were retrieved from healthy donors and subjected to artificial oocyte activation using calcium ionophore and puromycin to generate PGs (n = 6) or enucleated and subjected to intracytoplasmic sperm injection to generate AGs (n = 10). INTERVENTION(S): Uniparental constructs at different early stages of development were disaggregated into constituent single cells (we suggest the terms parthenocytes and androcytes) to characterize the single-cell transcriptional landscape using next-generation sequencing. MAIN OUTCOMES MEASURE(S): Transcriptomic profiles comparison between different stages of early development in AGs and PGs. RESULT(S): The uniparental transcriptomic profiles at the first cell cycle showed 68 down-regulated and 26 up-regulated differentially expressed genes (DEGs) in PGs compared with AGs. During the third cell cycle, we found 60 up-regulated and 504 down-regulated DEGs in PGs compared with AGs. In the fourth cell cycle, 1,771 up-regulated and 1,171 down-regulated DEGs were found in PGs compared with AGs. The AGs and PGs had reduced EGA profiles during the first 3 cell cycles, and a spike of EGA at the fourth cell cycle was observed in PGs. CONCLUSION(S): Transcriptomic analysis of AGs and PGs revealed their complementary behavior until the fourth cell cycle. Androgenotes undergo a low wave of transcription during the first cell cycle, which reflects the paternal contribution to cell cycle coordination, mechanics of cell division, and novel transcription regulation. Maternal transcripts are most prominent in the third and fourth cell cycles, with amplification of transcription related to morphogenic progression and embryonic developmental competence acquisition. Regarding EGA, in PGs, a primitive EGA begins at the 1-cell stage and gradually progresses until the 4-cell stage, when crucial epigenetic reprogramming (through methylation) is up-regulated. In addition, our longitudinal single-cell transcriptomic analysis challenges that the zygote and early cleavage stages are the only totipotent entities, by revealing potential totipotency in cleavage-stage AGs and implications of paternal transcripts.


Assuntos
Sêmen , Transcriptoma , Humanos , Masculino , Perfilação da Expressão Gênica , Oócitos/metabolismo , Desenvolvimento Embrionário/genética
12.
ACS Appl Nano Mater ; 6(9): 7173-7185, 2023 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-37205295

RESUMO

Ni-Fe nanocatalysts supported on CeO2 have been prepared for the catalysis of methane steam reforming (MSR) aiming for coke-resistant noble metal-free catalysts. The catalysts have been synthesized by traditional incipient wetness impregnation as well as dry ball milling, a green and more sustainable preparation method. The impact of the synthesis method on the catalytic performance and the catalysts' nanostructure has been investigated. The influence of Fe addition has been addressed as well. The reducibility and the electronic and crystalline structure of Ni and Ni-Fe mono- and bimetallic catalysts have been characterized by temperature programmed reduction (H2-TPR), in situ synchrotron X-ray diffraction (SXRD), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. Their catalytic activity was tested between 700 and 950 °C at 108 L gcat-1 h-1 and with the reactant flow varying between 54 and 415 L gcat-1 h-1 at 700 °C. Hydrogen production rates of 67 mol gmet-1 h-1 have been achieved. The performance of the ball-milled Fe0.1Ni0.9/CeO2 catalyst was similar to that of Ni/CeO2 at high temperatures, but Raman spectroscopy revealed a higher amount of highly defective carbon on the surface of Ni-Fe nanocatalysts. The reorganization of the surface under MSR of the ball-milled NiFe/CeO2 has been monitored by in situ near-ambient pressure XPS experiments, where a strong reorganization of the Ni-Fe nanoparticles with segregation of Fe toward the surface has been observed. Despite the catalytic activity being lower in the low-temperature regime, Fe addition for the milled nanocatalyst increased the coke resistance and could be an efficient alternative to industrial Ni/Al2O3 catalysts.

13.
Trop Med Infect Dis ; 7(10)2022 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-36288006

RESUMO

The recent COVID-19 pandemic has profoundly impacted global malaria elimination programs, resulting in a sharp increase in malaria morbidity and mortality. To reduce this impact, unmet needs in malaria diagnostics must be addressed while resuming malaria elimination activities. Rapid diagnostic tests (RDTs), the unsung hero in malaria diagnosis, work to eliminate the prevalence of Plasmodium falciparum malaria through their efficient, cost-effective, and user-friendly qualities in detecting the antigen HRP2 (histidine-rich protein 2), among other proteins. However, the testing mechanism and management of malaria with RDTs presents a variety of limitations. This paper discusses the numerous factors (including parasitic, host, and environmental) that limit the performance of RDTs. Additionally, the paper explores outside factors that can hinder RDT performance. By understanding these factors that affect the performance of HRP2-based RDTs in the field, researchers can work toward creating and implementing more effective and accurate HRP2-based diagnostic tools. Further research is required to understand the extent of these factors, as the rapidly changing interplay between parasite and host directly hinders the effectiveness of the tool.

14.
Nat Commun ; 13(1): 5080, 2022 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-36038555

RESUMO

Efficiently treating methane emissions in transportation remains a challenge. Here, we investigate palladium and platinum mono- and bimetallic ceria-supported catalysts synthesized by mechanical milling and by traditional impregnation for methane total oxidation under dry and wet conditions, reproducing those present in the exhaust of natural gas vehicles. By applying a toolkit of in situ synchrotron techniques (X-ray diffraction, X-ray absorption and ambient pressure photoelectron spectroscopies), together with transmission electron microscopy, we show that the synthesis method greatly influences the interaction and structure at the nanoscale. Our results reveal that the components of milled catalysts have a higher ability to transform metallic Pd into Pd oxide species strongly interacting with the support, and achieve a modulated PdO/Pd ratio than traditionally-synthesized catalysts. We demonstrate that the unique structures attained by milling are key for the catalytic activity and correlate with higher methane conversion and longer stability in the wet feed.

15.
J Assist Reprod Genet ; 28(3): 211-6, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21125326

RESUMO

PURPOSE: Development of an ad hoc protocol for the preimplantion genetic diagnosis of propionic acidemia in a couple carrying the mutations c.737G>T (G246V) and c.1218del14ins12 (ins/del) in the PCCB gene. Propionic acidemia is an autosomal recessive metabolic disorder where the body is unable to process certain parts of proteins and lipids. Symptoms manifest few days after birth and sometimes progress to more serious medical problems, including heart abnormalities, coma and death. METHODS: Four short tandem repeat markers closely linked to the PCCB gene were tested, in order to support the direct mutation detection diagnosis. Multiplex fluorescent heminested polymerase chain reaction followed by fragment analysis and minisequencing was used. RESULTS: Fourteen single blastomeres from nine embryos were tested and two carrier embryos were transferred, resulting in the birth of two healthy boys. CONCLUSIONS: Preimplantation genetic diagnosis represents a valid reproductive option for couples affected of propionic acidemia, in order to avoid transmission to offspring.


Assuntos
Resultado da Gravidez , Diagnóstico Pré-Implantação , Acidemia Propiônica/genética , Gêmeos , Adulto , Feminino , Humanos , Masculino , Metilmalonil-CoA Descarboxilase/genética , Repetições de Microssatélites , Mutação , Linhagem , Gravidez , Acidemia Propiônica/diagnóstico , Acidemia Propiônica/patologia
16.
Adv Virus Res ; 109: 135-161, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33934826

RESUMO

Proteases precisely and irreversibly catalyze the hydrolysis of peptide bonds, regulating the fate, localization, and activity of many proteins. Consequently, proteolytic activity plays an important role in fundamental cellular processes such as differentiation and migration, immunological and inflammatory reactions, apoptosis and survival. During virus infection, host proteases are involved in several processes, from cell entry to initiation, progression and resolution of inflammation. On the other hand, many viruses encode their own highly specific proteases, responsible for the proteolytic processing of viral proteins, but, at the same time, to cleave host proteins to corrupt antiviral host responses and adjust protein activity to favor viral replication. Traditionally, protease substrate identification has been addressed by means of hypothesis-driven approaches, but recent advances in proteomics have made a toolkit available to uncover the extensive repertoire of host proteins cleaved during infection, either by viral or host proteases. Here, we review the currently available proteomics-based methods that can and have contributed to the systematic and unbiased identification of new protease substrates in the context of virus-host interactions. The role of specific proteases during the course of virus infections will also be highlighted.


Assuntos
Interações entre Hospedeiro e Microrganismos , Peptídeo Hidrolases/metabolismo , Proteômica/métodos , Proteínas Virais/metabolismo , Viroses/fisiopatologia , Animais , Livros , Humanos , Camundongos , Proteólise , Replicação Viral
17.
Fertil Steril ; 116(2): 583-596, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33926715

RESUMO

OBJECTIVE: To quantify the percentage of monopronuclear-derived blastocysts (MNBs) that are potentially useful for reproductive purposes using classic and state-of-the-art chromosome analysis approaches, and to study chromosomal distribution in the inner cell mass (ICM) and trophectoderm (TE) for intertissue/intratissue concordance comparison. DESIGN: Prospective experimental study. SETTING: Single-center in vitro fertilization clinic and reproductive genetics laboratory. PATIENT(S): A total of 1,128 monopronuclear zygotes were obtained between June 2016 and December 2018. INTERVENTION(S): MNBs were whole-fixed or biopsied to obtain a portion of ICM and 2 TE portions (TE1 and TE2) and were subsequently analyzed by fluorescence in situ hybridization, new whole-genome sequencing, and fingerprinting by single-nucleotide polymorphism array-based techniques (a-SNP). MAIN OUTCOME MEASURE(S): We assessed MNB rate, ploidy rate, and chromosomal constitution by new whole-genome sequencing, and parental composition by comparative a-SNP, performed in a "trio"-format (embryo/parents). The 24-chromosome distribution was compared between the TE and the ICM and within the TE. RESULT(S): A total of 18.4% of monopronuclear zygotes progressed to blastocysts; 77.6% of MNBs were diploid; 20% of MNBs were male and euploid, which might be reproductively useful. Seventy-five percent of MNBs were biparental and half of them were euploid, indicating that 40% might be reproductively useful. Intratissue concordance (TE1/TE2) was established for 93.3% and 73.3% for chromosome matching. Intertissue concordance (TE/ICM) was established for 78.8%, but 57.6% for chromosome matching. When segmental aneuploidy was not considered, intratissue concordance and chromosome matching increased to 100% and 80%, respectively, and intertissue concordance and chromosome matching increased to 84.8% and 75.8%, respectively. CONCLUSION(S): The a-SNP-trio strategy provides information about ploidy, euploidy, and parental origin in a single biopsy. This approach enabled us to identify 40% of MNBs with reproductive potential, which can have a significant effect in the clinical setting. Additionally, segmental aneuploidy is relevant for mismatched preimplantation genetic testing of aneuploidies, both within and between MNB tissues. Repeat biopsy might clarify whether segmental aneuploidy is a prone genetic character.


Assuntos
Blastocisto/ultraestrutura , Cromossomos/ultraestrutura , Ploidias , Polimorfismo de Nucleotídeo Único , Biópsia , Blastocisto/patologia , Massa Celular Interna do Blastocisto/ultraestrutura , Impressões Digitais de DNA , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Hibridização in Situ Fluorescente , Estudos Prospectivos
18.
Reprod Biomed Online ; 21(5): 658-62, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20888297

RESUMO

Hereditary angiooedema is an autosomal dominant disease caused by mutations in the SERPING1 gene. It is characterized by oedemas in different parts of the body, being particularly dangerous when swelling involves the upper airway. Preimplantation genetic diagnosis (PGD) was performed in a couple where the woman carries a deletion of 2.9Kb that includes exon 4 of the SERPING1 gene. Four polymorphic short tandem repeat markers were tested in order to establish the disease-bearing haplotype and three of them were fully informative. Amplification efficiency at the preclinical work up ranged from 71% to 100% for each locus and allele drop out rates were between 0% and 20% for the polymorphic markers. The couple underwent PGD using fluorescent multiplex heminested polymerase chain reaction. Six embryos were biopsied and five of them were diagnosed as healthy. Two embryos were transferred and a singleton pregnancy was achieved, resulting in the birth of a healthy boy.


Assuntos
Angioedemas Hereditários/genética , Proteínas Inativadoras do Complemento 1/genética , Diagnóstico Pré-Implantação/métodos , Adulto , Proteína Inibidora do Complemento C1 , Feminino , Humanos , Masculino , Linhagem , Reação em Cadeia da Polimerase/métodos , Gravidez , Deleção de Sequência
19.
Reprod Biomed Online ; 21(2): 206-11, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20541469

RESUMO

Hypokalaemic periodic paralysis is a rare dominant inherited disease where a person suffers sudden falls of circulating potassium concentrations, producing muscle weakness and sometimes severe paralysis. Attacks can occur as frequently as several times a day or once in a year. The age of onset is usually adolescence but symptoms can appear as early as 10 years of age. Muscle weakness can compromise vital functions such as breathing or swallowing and heart arrhythmias are also frequent during attacks. Preimplantation genetic diagnosis, an early form of prenatal diagnosis for couples at risk of transmitting inherited diseases, was used to prevent the transmission of this disease. Six polymorphic short tandem repeat or microsatellite markers (STR) closely linked to the CACNA1S gene were tested. Three fully informative markers were chosen to establish the disease-bearing haplotype in the family and to determine the genetic status of five embryos by multiplex fluorescent heminested PCR. Four of the five embryos tested were diagnosed as non-affected and one as affected. Two embryos were transferred resulting in a singleton pregnancy and the birth of a healthy girl.


Assuntos
Paralisia Periódica Hipopotassêmica/diagnóstico , Diagnóstico Pré-Implantação , Adulto , Sequência de Bases , Primers do DNA , Feminino , Humanos , Paralisia Periódica Hipopotassêmica/genética , Masculino , Linhagem , Reação em Cadeia da Polimerase
20.
J Assist Reprod Genet ; 26(5): 263-71, 2009 May.
Artigo em Inglês | MEDLINE | ID: mdl-19621255

RESUMO

PURPOSE: Description of the confluence of different molecular techniques to detect three different mutations in one cell. The man carries a 20 base pair insertion in exon 12 of the POR gene (c.1551_1552ins20), and the woman carries a point mutation in exon 8 of the POR gene (c.859G>C) plus a triplet repeat expansion in the HTT gene. METHODS: Huntington Disease (HD) had to be diagnosed using short tandem repeat (STR) markers linked to the HTT gene. The mutation c.1551_1552ins20 was analyzed by fragment size and c.859G>C was minisequenced. Furthermore, STR markers linked to the POR gene were included to support the diagnosis of P450 oxidoreductase (POR) deficiency. RESULTS: Nine embryos were diagnosed in total: three as POR deficiency affected, two as HD affected, one as POR deficiency and HD affected, and two as carriers of the paternal POR deficiency mutation and healthy for HD. These two last embryos were transferred but no pregnancy was achieved. CONCLUSIONS: A successful procedure combining direct and indirect methods for the detection of three different mutations in a single cell has been achieved for the first time.


Assuntos
Doença de Huntington/diagnóstico , Doença de Huntington/genética , Mutação , NADPH-Ferri-Hemoproteína Redutase/deficiência , NADPH-Ferri-Hemoproteína Redutase/genética , Diagnóstico Pré-Implantação/métodos , Análise Mutacional de DNA , Transferência Embrionária , Éxons , Feminino , Marcadores Genéticos , Humanos , Masculino , Repetições de Microssatélites , Linhagem , Mutação Puntual , Gravidez
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA