RESUMO
Fire is an important climate-driven disturbance in terrestrial ecosystems, also modulated by human ignitions or fire suppression. Changes in fire emissions can feed back on the global carbon cycle, but whether the trajectories of changing fire activity will exacerbate or attenuate climate change is poorly understood. Here, we quantify fire dynamics under historical and future climate and human demography using a coupled global climatefirecarbon cycle model that emulates 34 individual Earth system models (ESMs). Results are compared with counterfactual worlds, one with a constant preindustrial fire regime and another without fire. Although uncertainty in projected fire effects is large and depends on ESM, socioeconomic trajectory, and emissions scenario, we find that changes in human demography tend to suppress global fire activity, keeping more carbon within terrestrial ecosystems and attenuating warming. Globally, changes in fire have acted to warm climate throughout most of the 20th century. However, recent and predicted future reductions in fire activity may reverse this, enhancing land carbon uptake and corresponding to offsetting â¼5 to 10 y of global CO2 emissions at today's levels. This potentially reduces warming by up to 0.11 °C by 2100. We show that climatecarbon cycle feedbacks, as caused by changing fire regimes, are most effective at slowing global warming under lower emission scenarios. Our study highlights that ignitions and active and passive fire suppression can be as important in driving future fire regimes as changes in climate, although with some risk of more extreme fires regionally and with implications for other ecosystem functions in fire-dependent ecosystems.
Assuntos
Incêndios , Aquecimento Global , Carbono , Dióxido de Carbono , Mudança Climática , Demografia , Ecossistema , HumanosRESUMO
BACKGROUND: There is limited knowledge on the distribution of the health co-benefits of reduced air pollutants and carbon emissions in the transport sector across populations. METHODS: This Article describes a health impact assessment used to estimate the health co-benefits of alternative land passenger transport scenarios for the city of Beijing, China, testing the effect of five transport-based scenarios from 2020 to 2050 on health outcomes. New potential scenarios range from implementing a green transport infrastructure, to scenarios primarily based on the electrification of vehicle fleets and a deep decarbonisation scenario with near zero carbon emissions by 2050. The health co-benefits are disaggregated by age and sex and estimated in monetary terms. FINDINGS: The results show that all the alternative mitigation scenarios result in reduced PM2·5 and CO2 emissions compared to a business-as-usual scenario during 2020-50. The near zero scenario achieves the largest health co-benefits and economic benefits annually relative to the sole mitigation strategy, preventing 300 (95% CI 229-450) deaths, with health co-benefits and CO2 cost-saving an equivalent of 0·01% (0·00-0·03%) of Beijing's Gross domestic product in 2015 by 2050. Given Beijing's ageing population and higher mortality rate, individuals aged 50 years and older experience the greatest benefit from the mitigation scenarios. Regarding sex, the greatest health benefits occur in men. INTERPRETATION: This assessment provides estimates of the demographic distribution of benefits from the effects of combinations of green transport and decarbonising vehicles in transport futures. The results show that there are substantial positive health outcomes from decarbonising transport in Beijing. Policies aimed at encouraging active travel and use of public transport, increasing the safety of active travel, improving public transport infrastructure, and decarbonising vehicles lead to differential benefits. In addition, disaggregation by age and sex shows that the health impacts related to transport pollution disproportionately influence different age cohorts and genders. FUNDING: National Natural Science Foundation of China and FRIEND Project (through the National Research Foundation of Korea, funded by the Ministry of Science and ICT).
Assuntos
Poluição do Ar , Idoso , Poluição do Ar/prevenção & controle , Carbono , Dióxido de Carbono/análise , Demografia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Material ParticuladoAssuntos
Mudança Climática , Política de Saúde , Saúde , Política Ambiental , Saúde Global , Humanos , Cooperação Internacional , Saúde PúblicaRESUMO
Dynamic Global Vegetation Models (DGVMs) are commonly used to describe the land biogeochemical processes and regulate carbon and water pools. However, the simulation efficiency and validation of DGVMs are limited to varying temporal and spatial resolutions. Additionally, the uncertainties caused by different interpolation methods used in DGVMs are still not clear. In this study, we employ Socio-Economic and natural Vegetation ExpeRimental (SEVER) DGVM to simulate Net Ecosystem Exchange (NEE) flux with large scale National Centers for Environmental Prediction (NCEP) daily climate data as inputs for the years 1997-2000 at 14 Euroflux sites. It is shown that daily local NEE flux on chosen sites can be reasonably simulated, and daily temperature and shortwave radiation are the most essential inputs for daily NEE simulation compared with precipitation and the ratio of sunshine hours. Different running means (1 to 30 days) methods are analysed for each Euroflux site, and the best results of both averaged regression coefficient and averaged slope of regression are discovered by using 5 days running mean method. SEVER DGVM, driven by linearly interpolated daily climate data is compared at the monthly time step with Lund-Potsdam-Jena (LPJ) DGVM, which combines the linear interpolation of daily temperature with stochastic generation of daily precipitation. The comparison demonstrates that the stochastic generation of daily precipitation provides an acceptable fit to local observed NEE, but with a slight decrease in accuracy. Simulation experiments with SEVER DGVM demonstrate that daily local NEE flux inside a grid cell for a region as large as Europe can be modelled by DGVMs, using only large scale climate data as inputs.
RESUMO
Vegetation in Northern Hemisphere, being sensitive to climate change, plays an important role in the carbon cycles between land and the atmosphere. The response of vegetation to climate change was analyzed at pixel, biome and regional scale in Amur-Heilongjiang River Basin (AHRB) for growing season, spring, summer and autumn using Normalized Difference Vegetation Index and gridded climate data for the period 1982-2015. NDVI and climate variables trend detection methods and correlation analysis were applied. The potential impacts of human activities on growing season NDVI dynamics were investigated further using residual trend analysis. Results showed that at river basin scale, growing season vegetation experienced a discontinuous greening trend with two reversals, demonstrating that NDVI initially increased to mid-1990s, then declined to mid-2000s, and finally rebounded to 2015. This may be attributed to the shifting between drought and wet trends, indicating growing season NDVI was mainly regulated by precipitation. Temperature was the dominant factor on affecting spring vegetation growth while autumn NDVI showed negative correlation with precipitation due to the relation of precipitation with sunshine hours available for photosynthesis. The response of vegetation growth to climatic variations varied among vegetation types. Grassland NDVI exhibited positive correlation with precipitation in all time ranges. NDVI of needleleaved forest, broadleaved forest, mixed forest and woodland were positively correlated with temperature in all seasons, while showing significant negative correlation with autumn precipitation. Residual trend analysis revealed that human activities might lead to the vegetation degradation in China farming zone of AHRB. Fires also play an important role in regulating vegetation dynamics in the region. Results of our analysis can be used by national governments from three countries of AHRB in managing and negotiating vegetation resources of the region.