Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Bioorg Med Chem ; 97: 117559, 2024 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-38109811

RESUMO

Bacterial resistance is undoubtedly one of the main public health concerns especially with the emergence of metallo-ß-lactamases (MBLs) able to hydrolytically inactivate ß-lactam antibiotics. Currently, there are no inhibitors of MBLs in clinical use to rescue antibiotic action and the New Delhi metallo-ß-lactamase-1 (NDM-1) is still considered as one of the most relevant targets for inhibitor development. Following a fragment-based strategy to find new NDM-1 inhibitors, we identified aurone as a promising scaffold. A series of 60 derivatives were then evaluated and two of them were identified as promising inhibitors with Ki values as low as 1.7 and 2.5 µM. Moreover, these two most active compounds were able to potentiate meropenem in in vitro antimicrobial susceptibility assays. The molecular modelling provided insights about their likely interactions with the active site of NDM-1, thus enabling further improvement in the structure of this new inhibitor family.


Assuntos
Benzofuranos , Inibidores de beta-Lactamases , beta-Lactamases , Antibacterianos/farmacologia , Antibacterianos/química , Inibidores de beta-Lactamases/farmacologia , Inibidores de beta-Lactamases/química , beta-Lactamases/química , Testes de Sensibilidade Microbiana
2.
Bioorg Med Chem ; 72: 116964, 2022 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-36030663

RESUMO

Metallo-ß-lactamases (MBLs) represent an increasingly serious threat to public health because of their increased prevalence worldwide in relevant opportunistic Gram-negative pathogens. MBLs efficiently inactivate widely used and most valuable ß-lactam antibiotics, such as oxyiminocephalosporins (ceftriaxone, ceftazidime) and the last-resort carbapenems. To date, no MBL inhibitor has been approved for therapeutic applications. We are developing inhibitors characterized by a 1,2,4-triazole-3-thione scaffold as an original zinc ligand and few promising series were already reported. Here, we present the synthesis and evaluation of a new series of compounds characterized by the presence of an arylalkyl substituent at position 4 of the triazole ring. The alkyl link was mainly an ethylene, but a few compounds without alkyl or with an alkyl group of various lengths up to a butyl chain were also synthesized. Some compounds in both sub-series were micromolar to submicromolar inhibitors of tested VIM-type MBLs. A few of them were broad-spectrum inhibitors, as they showed significant inhibitory activity on NDM-1 and, to a lesser extent, IMP-1. Among these, several inhibitors were able to significantly reduce the meropenem MIC on VIM-1- and VIM-4- producing clinical isolates by up to 16-fold. In addition, ACE inhibition was absent or moderate and one promising compound did not show toxicity toward HeLa cells at concentrations up to 250 µM. This series represents a promising basis for further exploration. Finally, molecular modelling of representative compounds in complex with VIM-2 was performed to study their binding mode.


Assuntos
Tionas , Inibidores de beta-Lactamases , Humanos , Antibacterianos/farmacologia , Inibidores de beta-Lactamases/química , Inibidores de beta-Lactamases/farmacologia , beta-Lactamases/metabolismo , Carbapenêmicos/farmacologia , Ceftazidima , Ceftriaxona , Etilenos , Células HeLa , Ligantes , Meropeném , Testes de Sensibilidade Microbiana , Triazóis/química , Triazóis/farmacologia , Zinco
3.
Bioorg Chem ; 113: 105024, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34116340

RESUMO

In Gram-negative bacteria, the major mechanism of resistance to ß-lactam antibiotics is the production of one or several ß-lactamases (BLs), including the highly worrying carbapenemases. Whereas inhibitors of these enzymes were recently marketed, they only target serine-carbapenemases (e.g. KPC-type), and no clinically useful inhibitor is available yet to neutralize the class of metallo-ß-lactamases (MBLs). We are developing compounds based on the 1,2,4-triazole-3-thione scaffold, which binds to the di-zinc catalytic site of MBLs in an original fashion, and we previously reported its promising potential to yield broad-spectrum inhibitors. However, up to now only moderate antibiotic potentiation could be observed in microbiological assays and further exploration was needed to improve outer membrane penetration. Here, we synthesized and characterized a series of compounds possessing a diversely functionalized alkyl chain at the 4-position of the heterocycle. We found that the presence of a carboxylic group at the extremity of an alkyl chain yielded potent inhibitors of VIM-type enzymes with Ki values in the µM to sub-µM range, and that this alkyl chain had to be longer or equal to a propyl chain. This result confirmed the importance of a carboxylic function on the 4-substituent of 1,2,4-triazole-3-thione heterocycle. As observed in previous series, active compounds also preferentially contained phenyl, 2-hydroxy-5-methoxyphenyl, naphth-2-yl or m-biphenyl at position 5. However, none efficiently inhibited NDM-1 or IMP-1. Microbiological study on VIM-2-producing E. coli strains and on VIM-1/VIM-4-producing multidrug-resistant K. pneumoniae clinical isolates gave promising results, suggesting that the 1,2,4-triazole-3-thione scaffold worth continuing exploration to further improve penetration. Finally, docking experiments were performed to study the binding mode of alkanoic analogues in the active site of VIM-2.


Assuntos
Tionas/química , Inibidores de beta-Lactamases/química , beta-Lactamases/química , Antibacterianos/síntese química , Antibacterianos/química , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Sítios de Ligação , Sobrevivência Celular/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Escherichia coli/enzimologia , Células HeLa , Humanos , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/isolamento & purificação , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Ligação Proteica , Relação Estrutura-Atividade , Tionas/metabolismo , Triazóis/química , Inibidores de beta-Lactamases/metabolismo , beta-Lactamases/metabolismo
4.
ACS Infect Dis ; 9(8): 1546-1557, 2023 08 11.
Artigo em Inglês | MEDLINE | ID: mdl-37439673

RESUMO

Addressing antibacterial resistance is a major concern of the modern world. The development of new approaches to meet this deadly threat is a critical priority. In this article, we investigate a new approach to negate bacterial resistance: exploit the ß-lactam bond cleavage by ß-lactamases to selectively trigger antibacterial prodrugs into the bacterial periplasm. Indeed, multidrug-resistant Gram-negative pathogens commonly produce several ß-lactamases that are able to inactivate ß-lactam antibiotics, our most reliable and widely used therapeutic option. The chemical structure of these prodrugs is based on a monobactam promoiety, covalently attached to the active antibacterial substance, zidovudine (AZT). We describe the synthesis of 10 prodrug analogues (5a-h) in four to nine steps and their biological activity. Selective enzymatic activation by a panel of ß-lactamases is demonstrated, and subsequent structure-activity relationships are discussed. The best compounds are further evaluated for their activity on both laboratory strains and clinical isolates, preliminary stability, and toxicity.


Assuntos
Pró-Fármacos , beta-Lactamas , beta-Lactamas/farmacologia , beta-Lactamases , Zidovudina/farmacologia , Pró-Fármacos/química , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Bactérias Gram-Negativas
5.
Pharmaceuticals (Basel) ; 16(12)2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38139809

RESUMO

The worldwide emergence and dissemination of Gram-negative bacteria expressing metallo-ß-lactamases (MBLs) menace the efficacy of all ß-lactam antibiotics, including carbapenems, a last-line treatment usually restricted to severe pneumonia and urinary tract infections. Nonetheless, no MBL inhibitor is yet available in therapy. We previously identified a series of 1,2,4-triazole-3-thione derivatives acting as micromolar inhibitors of MBLs in vitro, but devoid of synergistic activity in microbiological assays. Here, via a multidisciplinary approach, including molecular modelling, synthesis, enzymology, microbiology, and X-ray crystallography, we optimized this series of compounds and identified low micromolar inhibitors active against clinically relevant MBLs (NDM-1- and VIM-type). The best inhibitors increased, to a certain extent, the susceptibility of NDM-1- and VIM-4-producing clinical isolates to meropenem. X-ray structures of three selected inhibitors in complex with NDM-1 elucidated molecular recognition at the base of potency improvement, confirmed in silico predicted orientation, and will guide further development steps.

6.
Eur J Med Chem ; 240: 114599, 2022 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-35841882

RESUMO

Hydrolysis of ß-lactam drugs, a major class of antibiotics, by serine or metallo-ß-lactamases (SBL or MBL) is one of the main mechanisms for antibiotic resistance. New Delhi Metallo-ß-lactamase-1 (NDM-1), an acquired metallo-carbapenemase first reported in 2009, is currently considered one of the most clinically relevant targets for the development of ß-lactam-ß-lactamase inhibitor combinations active on NDM-producing clinical isolates. Identification of scaffolds that could be further rationally pharmacomodulated to design new and efficient NDM-1 inhibitors is thus urgently needed. Fragment-based drug discovery (FBDD) has become of great interest for the development of new drugs for the past few years and combination of several FBDD strategies, such as virtual and NMR screening, can reduce the drawbacks of each of them independently. Our methodology starting from a high throughput virtual screening on NDM-1 of a large library (more than 700,000 compounds) allowed, after slicing the hit molecules into fragments, to build a targeted library. These hit fragments were included in an in-house untargeted library fragments that was screened by Saturation Transfer Difference (STD) Nuclear Magnetic Resonance (NMR). 37 fragments were finally identified and used to establish a pharmacophore. 10 molecules based on these hit fragments were synthesized to validate our strategy. Indenone 89 that combined two identified fragments shows an inhibitory activity on NDM-1 with a Ki value of 4 µM.


Assuntos
Inibidores de beta-Lactamases , beta-Lactamases , Antibacterianos/química , Antibacterianos/farmacologia , Descoberta de Drogas , Inibidores de beta-Lactamases/química , Inibidores de beta-Lactamases/farmacologia , beta-Lactamases/química , beta-Lactamas
7.
ChemMedChem ; 17(7): e202100699, 2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35050549

RESUMO

Metallo-ß-lactamases (MBLs) are increasingly involved as a major mechanism of resistance to carbapenems in relevant opportunistic Gram-negative pathogens. Unfortunately, clinically efficient MBL inhibitors still represent an unmet medical need. We previously reported several series of compounds based on the 1,2,4-triazole-3-thione scaffold. In particular, Schiff bases formed between diversely 5-substituted-4-amino compounds and 2-carboxybenzaldehyde were broad-spectrum inhibitors of VIM-type, NDM-1 and IMP-1 MBLs. Unfortunately, these compounds were unable to restore antibiotic susceptibility of MBL-producing bacteria, probably because of poor penetration and/or susceptibility to hydrolysis. To improve their microbiological activity, we synthesized and characterized compounds where the hydrazone-like bond of the Schiff base analogues was replaced by a stable ethyl link. This small change resulted in a narrower inhibition spectrum, as all compounds were poorly or not inhibiting NDM-1 and IMP-1, but showed a significantly better activity on VIM-type enzymes, with Ki values in the µM to sub-µM range. The resolution of the crystallographic structure of VIM-2 in complex with one of the best inhibitors yielded valuable information about their binding mode. Interestingly, several compounds were shown to restore the ß-lactam susceptibility of VIM-type-producing E. coli laboratory strains and also of K. pneumoniae clinical isolates. In addition, selected compounds were found to be devoid of toxicity toward human cancer cells at high concentration, thus showing promising safety.


Assuntos
Tionas , Inibidores de beta-Lactamases , Antibacterianos/química , Antibacterianos/farmacologia , Escherichia coli , Humanos , Testes de Sensibilidade Microbiana , Tionas/farmacologia , Triazóis/química , Inibidores de beta-Lactamases/química , beta-Lactamases/metabolismo
8.
J Med Chem ; 65(24): 16392-16419, 2022 12 22.
Artigo em Inglês | MEDLINE | ID: mdl-36450011

RESUMO

Metallo-ß-lactamases (MBLs) contribute to the resistance of Gram-negative bacteria to carbapenems, last-resort antibiotics at hospital, and MBL inhibitors are urgently needed to preserve these important antibacterial drugs. Here, we describe a series of 1,2,4-triazole-3-thione-based inhibitors displaying an α-amino acid substituent, which amine was mono- or disubstituted by (hetero)aryl groups. Compounds disubstituted by certain nitrogen-containing heterocycles showed submicromolar activities against VIM-type enzymes and strong NDM-1 inhibition (Ki = 10-30 nM). Equilibrium dialysis, native mass spectrometry, isothermal calorimetry (ITC), and X-ray crystallography showed that the compounds inhibited both VIM-2 and NDM-1 at least partially by stripping the catalytic zinc ions. These inhibitors also displayed a very potent synergistic activity with meropenem (16- to 1000-fold minimum inhibitory concentration (MIC) reduction) against VIM-type- and NDM-1-producing ultraresistant clinical isolates, including Enterobacterales and Pseudomonas aeruginosa. Furthermore, selected compounds exhibited no or moderate toxicity toward HeLa cells, favorable absorption, distribution, metabolism, excretion (ADME) properties, and no or modest inhibition of several mammalian metalloenzymes.


Assuntos
Tionas , Inibidores de beta-Lactamases , Humanos , Inibidores de beta-Lactamases/farmacologia , Inibidores de beta-Lactamases/química , Tionas/farmacologia , Células HeLa , Antibacterianos/farmacologia , Antibacterianos/química , beta-Lactamases/metabolismo , Testes de Sensibilidade Microbiana
9.
Eur J Med Chem ; 226: 113873, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34626878

RESUMO

Metallo-ß-lactamases (MBLs) are important contributors of Gram-negative bacteria resistance to ß-lactam antibiotics. MBLs are highly worrying because of their carbapenemase activity, their rapid spread in major human opportunistic pathogens while no clinically useful inhibitor is available yet. In this context, we are exploring the potential of compounds based on the 1,2,4-triazole-3-thione scaffold as an original ligand of the di-zinc active sites of MBLs, and diversely substituted at its positions 4 and 5. Here, we present a new series of compounds substituted at the 4-position by a thioether-containing alkyl chain with a carboxylic and/or an aryl group at its extremity. Several compounds showed broad-spectrum inhibition with Ki values in the µM to sub-µM range against VIM-type enzymes, NDM-1 and IMP-1. The presence of the sulfur and of the aryl group was important for the inhibitory activity and the binding mode of a few compounds in VIM-2 was revealed by X-ray crystallography. Importantly, in vitro antibacterial susceptibility assays showed that several inhibitors were able to potentiate the activity of meropenem on Klebsiella pneumoniae clinical isolates producing VIM-1 or VIM-4, with a potentiation effect of up to 16-fold. Finally, a selected compound was found to only moderately inhibit the di-zinc human glyoxalase II, and several showed no or only moderate toxicity toward several human cells, thus favourably completing a promising behaviour.


Assuntos
Sulfetos/farmacologia , Tionas/farmacologia , Triazóis/farmacologia , Inibidores de beta-Lactamases/farmacologia , beta-Lactamases/metabolismo , Relação Dose-Resposta a Droga , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Sulfetos/química , Tionas/síntese química , Tionas/química , Triazóis/síntese química , Triazóis/química , Inibidores de beta-Lactamases/síntese química , Inibidores de beta-Lactamases/química
10.
Sci Rep ; 10(1): 12763, 2020 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-32728062

RESUMO

Bacteria are known to evade ß-lactam antibiotic action by producing ß-lactamases (BLs), including carbapenemases, which are able to hydrolyze nearly all available ß-lactams. The production of BLs represents one of the best known and most targeted mechanisms of resistance in bacteria. We have performed the parallel screening of commercially available compounds against a panel of clinically relevant BLs: class A CTX-M-15 and KPC-2, subclass B1 NDM-1 and VIM-2 MBLs, and the class C P. aeruginosa AmpC. The results show that all BLs prefer scaffolds having electron pair donors: KPC-2 is preferentially inhibited by sulfonamide and tetrazole-based derivatives, NDM-1 by compounds bearing a thiol, a thiosemicarbazide or thiosemicarbazone moiety, while VIM-2 by triazole-containing molecules. Few broad-spectrum BLs inhibitors were identified; among these, compound 40 potentiates imipenem activity against an NDM-1-producing E. coli clinical strain. The binary complexes of the two most promising compounds binding NDM-1 and VIM-2 were obtained at high resolution, providing strong insights to improve molecular docking simulations, especially regarding the interaction of MBLs with inhibitors.


Assuntos
Proteínas de Bactérias/antagonistas & inibidores , Serina/química , Inibidores de beta-Lactamases/farmacologia , Antibacterianos/farmacologia , Cristalografia por Raios X , Bases de Dados de Proteínas , Desenho de Fármacos , Descoberta de Drogas , Escherichia coli/efeitos dos fármacos , Hidrólise , Ligantes , Testes de Sensibilidade Microbiana , Simulação de Acoplamento Molecular , Ligação Proteica , Conformação Proteica , Proteínas Recombinantes/química , Semicarbazidas/química , Compostos de Sulfidrila/química , Sulfonamidas/química , Tetrazóis/química , beta-Lactamases
11.
Biomolecules ; 10(8)2020 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-32717907

RESUMO

To fight the increasingly worrying bacterial resistance to antibiotics, the discovery and development of new therapeutics is urgently needed. Here, we report on a new series of 1,2,4-triazole-3-thione compounds as inhibitors of metallo-ß-lactamases (MBLs), which represent major resistance determinants to ß-lactams, and especially carbapenems, in Gram-negative bacteria. These molecules are stable analogs of 4-amino-1,2,4-triazole-derived Schiff bases, where the hydrazone-like bond has been reduced (hydrazine series) or the 4-amino group has been acylated (hydrazide series); the synthesis and physicochemical properties thereof are described. The inhibitory potency was determined on the most clinically relevant acquired MBLs (IMP-, VIM-, and NDM-types subclass B1 MBLs). When compared with the previously reported hydrazone series, hydrazine but not hydrazide analogs showed similarly potent inhibitory activity on VIM-type enzymes, especially VIM-2 and VIM-4, with Ki values in the micromolar to submicromolar range. One of these showed broad-spectrum inhibition as it also significantly inhibited VIM-1 and NDM-1. Restoration of ß-lactam activity in microbiological assays was observed for one selected compound. Finally, the binding to the VIM-2 active site was evaluated by isothermal titration calorimetry and a modeling study explored the effect of the linker structure on the mode of binding with this MBL.


Assuntos
Farmacorresistência Bacteriana/efeitos dos fármacos , Bactérias Gram-Negativas/efeitos dos fármacos , Tionas/química , Triazóis/química , Inibidores de beta-Lactamases/farmacologia , beta-Lactamases/metabolismo , Antibacterianos/química , Antibacterianos/farmacologia , Infecções Bacterianas/microbiologia , Infecções Bacterianas/prevenção & controle , Biocatálise/efeitos dos fármacos , Carbapenêmicos/química , Carbapenêmicos/farmacologia , Bactérias Gram-Negativas/metabolismo , Humanos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Inibidores de beta-Lactamases/química , beta-Lactamas/química , beta-Lactamas/farmacologia
12.
Eur J Med Chem ; 208: 112720, 2020 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-32937203

RESUMO

Resistance to ß-lactam antibiotics in Gram-negatives producing metallo-ß-lactamases (MBLs) represents a major medical threat and there is an extremely urgent need to develop clinically useful inhibitors. We previously reported the original binding mode of 5-substituted-4-amino/H-1,2,4-triazole-3-thione compounds in the catalytic site of an MBL. Moreover, we showed that, although moderately potent, they represented a promising basis for the development of broad-spectrum MBL inhibitors. Here, we synthesized and characterized a large number of 4-amino-1,2,4-triazole-3-thione-derived Schiff bases. Compared to the previous series, the presence of an aryl moiety at position 4 afforded an average 10-fold increase in potency. Among 90 synthetic compounds, more than half inhibited at least one of the six tested MBLs (L1, VIM-4, VIM-2, NDM-1, IMP-1, CphA) with Ki values in the µM to sub-µM range. Several were broad-spectrum inhibitors, also inhibiting the most clinically relevant VIM-2 and NDM-1. Active compounds generally contained halogenated, bicyclic aryl or phenolic moieties at position 5, and one substituent among o-benzoic, 2,4-dihydroxyphenyl, p-benzyloxyphenyl or 3-(m-benzoyl)-phenyl at position 4. The crystallographic structure of VIM-2 in complex with an inhibitor showed the expected binding between the triazole-thione moiety and the dinuclear centre and also revealed a network of interactions involving Phe61, Tyr67, Trp87 and the conserved Asn233. Microbiological analysis suggested that the potentiation activity of the compounds was limited by poor outer membrane penetration or efflux. This was supported by the ability of one compound to restore the susceptibility of an NDM-1-producing E. coli clinical strain toward several ß-lactams in the presence only of a sub-inhibitory concentration of colistin, a permeabilizing agent. Finally, some compounds were tested against the structurally similar di-zinc human glyoxalase II and found weaker inhibitors of the latter enzyme, thus showing a promising selectivity towards MBLs.


Assuntos
Bases de Schiff/farmacologia , Tionas/farmacologia , Triazóis/farmacologia , Inibidores de beta-Lactamases/farmacologia , beta-Lactamases/metabolismo , Cristalografia por Raios X , Escherichia coli/efeitos dos fármacos , Proteínas de Escherichia coli/metabolismo , Células Endoteliais da Veia Umbilical Humana , Humanos , Testes de Sensibilidade Microbiana , Ligação Proteica , Pseudomonas aeruginosa/química , Bases de Schiff/síntese química , Bases de Schiff/metabolismo , Tionas/síntese química , Tionas/metabolismo , Triazóis/síntese química , Triazóis/metabolismo , Inibidores de beta-Lactamases/síntese química , Inibidores de beta-Lactamases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA