Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 75
Filtrar
1.
J Biomech Eng ; 145(1)2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-35993786

RESUMO

Head injuries account for 15%-20% of all military injuries and pose a high risk of causing functional disability and fatality. Blunt ballistic impacts are one of the threats that can lead to severe head injuries. This review aims to examine the mechanisms and injury risk assessment associated with blunt ballistic head injury (BBHI). The review further discusses research methods and instrumentation used in BBHI studies, focusing on their limitations and challenges. Studies on the mechanisms of focal and diffuse brain injuries remain largely inconclusive and require further effort. Some studies have attempted to associate BBHIs with head mechanics, but more research is required to establish correlations between head mechanics and injury severity. Limited access to experimental models and a lack of instrumentation capable of measuring the mechanics of brain tissue in situ are potential reasons for the lack of understanding of injury mechanisms, injury correlations, and injury tolerance levels specific to this loading regime. Targeted research for understanding and assessing head injuries in blunt ballistic impacts is a necessary step in improving our ability to design protection systems to mitigate these injuries.


Assuntos
Traumatismos Craniocerebrais , Traumatismos Craniocerebrais/prevenção & controle , Desenho de Equipamento , Humanos , Medição de Risco
2.
Sensors (Basel) ; 23(21)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37960580

RESUMO

Maintaining a stable upright posture is essential for performing activities of daily living, and impaired standing balance may impact an individual's quality of life. Therefore, accurate and sensitive methods for assessing static balance are crucial for identifying balance impairments, understanding the underlying mechanisms of the balance deficiencies, and developing targeted interventions to improve standing balance and prevent falls. This review paper first explores the methods to quantify standing balance. Then, it reviews traditional posturography and recent advancements in using wearable inertial measurement units (IMUs) to assess static balance in two populations: older adults and those with incomplete spinal cord injury (iSCI). The inclusion of these two groups is supported by their large representation among individuals with balance impairments. Also, each group exhibits distinct aspects in balance assessment due to diverse underlying causes associated with aging and neurological impairment. Given the high vulnerability of both demographics to balance impairments and falls, the significance of targeted interventions to improve standing balance and mitigate fall risk becomes apparent. Overall, this review highlights the importance of static balance assessment and the potential of emerging methods and technologies to improve our understanding of postural control in different populations.


Assuntos
Atividades Cotidianas , Traumatismos da Medula Espinal , Humanos , Idoso , Qualidade de Vida , Modalidades de Fisioterapia , Envelhecimento , Equilíbrio Postural
3.
Gerontology ; 68(11): 1233-1245, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35093943

RESUMO

INTRODUCTION: Observational tests, e.g., the Berg Balance Scale (BBS) are widely used for balance evaluation in the elderly fallers. However, they do not allow objective outcome evaluation of rehabilitative interventions. This study aimed to investigate, in a clinical setting, the use of inertial measurement units (IMUs) integrated into the BBS test for objective outcome evaluation of balance rehabilitation in elderly fallers compared to conventional BBS scores. METHODS: Thirty-six elderly fallers were recruited from the in-patient population of a geriatrics Clinic. Participants performed the BBS test while wearing 3 IMUs placed on the sternum, sacrum, and tibia of the dominant leg following admission to the clinic. Subsequently, they completed a rehabilitation program for 2-4 weeks. They performed a similar test before their discharge. The physical therapist recorded the BBS scores at both sessions, and the sensor data of the 2-min quiet standing task (BBS task 2) were extracted for objective balance evaluation. Moreover, eleven young adults were recruited to perform a 2-min quiet standing test while wearing the same IMUs. Center-of-pressure (COP) and segmental center-of-mass (COM) accelerations were calculated to estimate time-domain, frequency-domain, and intersegment coordination biomarkers of balance. RESULTS: COP time- and frequency-domain measures, COM acceleration time-domain measures, and intersegment coordination measures could identify age-related changes in balance of seniors compared to young adults (p < 0.05). Moreover, balance biomarkers of senior adults exhibited a reduced sway acceleration and jerkiness in the medial-lateral direction post-rehabilitation (p < 0.05). Although the total BBS scores increased post-rehabilitation, sway displacement and velocity did not significantly improve. We observed a significant association between pelvis-leg coordination at high sway oscillations and the total BBS scores pre- and post-rehabilitation. CONCLUSION: IMUs enable not only the characterization of underlying causes of impaired balance but also the identification of improved and yet impaired aspects of balance post-rehabilitation. Hence, IMUs allow us to characterize risk factors post-rehabilitation in elderly fallers, whereas the BBS scores only show changes in overall balance. It is crucial to objectively evaluate the effectiveness of such interventions to reduce future falls and their adverse consequences. Therefore, instrumented balance assessment is recommended since it can provide quantitative and objective measures for clinical outcome evaluations.


Assuntos
Aceleração , Equilíbrio Postural , Humanos , Idoso , Fatores de Risco , Alta do Paciente
4.
Behav Res Methods ; 2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36085543

RESUMO

Assessing gaze behavior during real-world tasks is difficult; dynamic bodies moving through dynamic worlds make gaze analysis difficult. Current approaches involve laborious coding of pupil positions. In settings where motion capture and mobile eye tracking are used concurrently in naturalistic tasks, it is critical that data collection be simple, efficient, and systematic. One solution is to combine eye tracking with motion capture to generate 3D gaze vectors. When combined with tracked or known object locations, 3D gaze vector generation can be automated. Here we use combined eye and motion capture and explore how linear regression models generate accurate 3D gaze vectors. We compare spatial accuracy of models derived from four short calibration routines across three pupil data inputs: the efficacy of calibration routines was assessed, a validation task requiring short fixations on task-relevant locations, and a naturalistic object interaction task to bridge the gap between laboratory and "in the wild" studies. Further, we generated and compared models using spherical and Cartesian coordinate systems and monocular (left or right) or binocular data. All calibration routines performed similarly, with the best performance (i.e., sub-centimeter errors) coming from the naturalistic task trials when the participant is looking at an object in front of them. We found that spherical coordinate systems generate the most accurate gaze vectors with no differences in accuracy when using monocular or binocular data. Overall, we recommend 1-min calibration routines using binocular pupil data combined with a spherical world coordinate system to produce the highest-quality gaze vectors.

5.
J Biomech Eng ; 143(9)2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-33817744

RESUMO

Head surrogates are widely used in biomechanical research and headgear assessment. They are designed to approximate the inertial and mechanical properties of the head and are instrumented to measure global head kinematics. Due to the recent interest in studying disruption to the brain, some head models include internal fluid layers and brain tissue, and instrumentation to measure head intracranial biomechanics. However, it is unknown whether such models exhibit realistic human responses. Therefore, this study aims to assess the biofidelity and repeatability of a head model, the Blast Injury Protection Evaluation Device (BIPED), that can measure both global head kinematics and intraparenchymal pressure (IPP) for application in blunt impact, a common loading scenario in civilian life. Drop tests were conducted with the BIPED and the widely used Hybrid III headform. BIPED measures were compared to the Hybrid III data and published cadaveric data, and the biofidelity level of the global linear acceleration was quantified using CORrelation and Analysis (CORA) ratings. The repeatability of the acceleration and IPP measurements in multiple impact scenarios was evaluated via the coefficient of variation (COV) of the magnitudes and pulse durations. BIPED acceleration peaks were generally not significantly different from cadaver and Hybrid III data. The CORA ratings for the BIPED and Hybrid III accelerations ranged from 0.50 to 0.61 and 0.51 to 0.77, respectively. The COVs of acceleration and IPP were generally below 10%. This study is an important step toward a biofidelic head surrogate measuring both global kinematics and IPP in blunt impact.


Assuntos
Aceleração , Encéfalo/patologia , Cabeça , Fenômenos Mecânicos , Modelos Biológicos , Pressão , Fenômenos Biomecânicos , Traumatismos por Explosões/patologia , Humanos , Reprodutibilidade dos Testes
6.
J Neuroeng Rehabil ; 18(1): 72, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33933105

RESUMO

BACKGROUND: Research studies on upper limb prosthesis function often rely on the use of simulated myoelectric prostheses (attached to and operated by individuals with intact limbs), primarily to increase participant sample size. However, it is not known if these devices elicit the same movement strategies as myoelectric prostheses (operated by individuals with amputation). The objective of this study was to address the question of whether non-disabled individuals using simulated prostheses employ the same compensatory movements (measured by hand and upper body kinematics) as individuals who use actual myoelectric prostheses. METHODS: The upper limb movements of two participant groups were investigated: (1) twelve non-disabled individuals wearing a simulated prosthesis, and (2) three individuals with transradial amputation using their custom-fitted myoelectric devices. Motion capture was used for data collection while participants performed a standardized functional task. Performance metrics, hand movements, and upper body angular kinematics were calculated. For each participant group, these measures were compared to those from a normative baseline dataset. Each deviation from normative movement behaviour, by either participant group, indicated that compensatory movements were used during task performance. RESULTS: Results show that participants using either a simulated or actual myoelectric prosthesis exhibited similar deviations from normative behaviour in phase durations, hand velocities, hand trajectories, number of movement units, grip aperture plateaus, and trunk and shoulder ranges of motion. CONCLUSIONS: This study suggests that the use of a simulated prosthetic device in upper limb research offers a reasonable approximation of compensatory movements employed by a low- to moderately-skilled transradial myoelectric prosthesis user.


Assuntos
Membros Artificiais , Atividade Motora/fisiologia , Desenho de Prótese/métodos , Extremidade Superior/fisiologia , Adulto , Amputação Cirúrgica , Fenômenos Biomecânicos , Feminino , Humanos , Masculino , Movimento/fisiologia , Amplitude de Movimento Articular
7.
Sensors (Basel) ; 21(5)2021 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-33800790

RESUMO

Advances in lower-limb prosthetic technologies have facilitated the restoration of ambulation; however, users of such technologies still experience reduced balance control, also due to the absence of proprioceptive feedback. Recent efforts have demonstrated the ability to restore kinesthetic feedback in upper-limb prosthesis applications; however, technical solutions to trigger the required muscle vibration and provide automated feedback have not been explored for lower-limb prostheses. The study's first objective was therefore to develop a feedback system capable of tracking lower-limb movement and automatically triggering a muscle vibrator to induce the kinesthetic illusion. The second objective was to investigate the developed system's ability to provide kinesthetic feedback in a case participant. A low-cost, wireless feedback system, incorporating two inertial measurement units to trigger a muscle vibrator, was developed and tested in an individual with limb loss above the knee. Our system had a maximum communication delay of 50 ms and showed good tracking of Gaussian and sinusoidal movement profiles for velocities below 180 degrees per second (error < 8 degrees), mimicking stepping and walking, respectively. We demonstrated in the case participant that the developed feedback system can successfully elicit the kinesthetic illusion. Our work contributes to the integration of sensory feedback in lower-limb prostheses, to increase their use and functionality.


Assuntos
Membros Artificiais , Análise Custo-Benefício , Retroalimentação , Humanos , Cinestesia , Movimento
8.
J Biomech Eng ; 140(10)2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30029241

RESUMO

Kinetics assessment of the human head-arms-trunk (HAT) complex via a multisegment model is a useful tool for objective clinical evaluation of several pathological conditions. Inaccuracies in body segment parameters (BSPs) are a major source of uncertainty in the estimation of the joint moments associated with the multisegment HAT. Given the large intersubject variability, there is currently no comprehensive database for the estimation of BSPs for the HAT. We propose a nonlinear, multistep, optimization-based, noninvasive method for estimating individual-specific BSPs and calculating joint moments in a multisegment HAT model. Eleven nondisabled individuals participated in a trunk-bending experiment and their body motion was recorded using cameras and a force plate. A seven-segment model of the HAT was reconstructed for each participant. An initial guess of the BSPs was obtained by individual-specific scaling of the BSPs calculated from the male visible human (MVH) images. The intersegmental moments were calculated using both bottom-up and top-down inverse dynamics approaches. Our proposed method adjusted the scaled BSPs and center of pressure (COP) offsets to estimate optimal individual-specific BSPs that minimize the difference between the moments obtained by top-down and bottom-up inverse dynamics approaches. Our results indicate that the proposed method reduced the error in the net joint moment estimation (defined as the difference between the net joint moment calculated via bottom-up and top-down approaches) by 79.3% (median among participants). Our proposed method enables an optimized estimation of individual-specific BSPs and, consequently, a less erroneous assessment of the three-dimensional (3D) kinetics of a multisegment HAT model.


Assuntos
Antropometria , Tronco/anatomia & histologia , Adulto , Fenômenos Biomecânicos , Feminino , Humanos , Cinética , Masculino , Dinâmica não Linear
9.
J Biomech Eng ; 140(4)2018 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29238816

RESUMO

Methods that effectively assess and train dynamic seated balance are critical for enhancing functional independence and reducing risk of secondary health complications in the elderly and individuals with neuromuscular impairments. The objective of this research was to devise and validate a portable tool for assessing and training dynamic seated balance. An instrumented wobble board was designed and constructed that (1) elicits multidirectional perturbations in seated individuals, (2) quantifies seated balance proficiency, and (3) provides real-time, kinematics-based vibrotactile feedback. After performing a technical validation study to compare kinematic wobble board measurements against a gold-standard motion capture system, 15 nondisabled participants performed a dynamic sitting task using the wobble board. Our results demonstrate that the tilt angle measurements were highly accurate throughout the range of wobble board dynamics. Furthermore, the posturographic analyses for the dynamic sitting task revealed that the wobble board can effectively discriminate between the different conditions of perturbed balance, demonstrating its potential to serve as a clinical tool for the assessment and training of seated balance. Vibrotactile feedback decreased the variance of wobble board tilt, demonstrating its potential for use as a balance training tool. Unlike similar instrumented tools, the wobble board is portable, requires no laboratory equipment, and can be adjusted to meet the user's balance abilities. While future work is warranted, obtained findings will aid in effective translation of assessment and training techniques to a clinical setting, which has the potential to enhance the diagnosis and prognosis for individuals with seated balance impairments.


Assuntos
Desenho de Equipamento , Fenômenos Mecânicos , Equilíbrio Postural , Fenômenos Biomecânicos , Estudos de Viabilidade , Retroalimentação Sensorial , Feminino , Humanos , Masculino , Postura Sentada , Software , Adulto Jovem
10.
J Vis ; 18(6): 18, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30029228

RESUMO

This study explores the role that vision plays in sequential object interactions. We used a head-mounted eye tracker and upper-limb motion capture to quantify visual behavior while participants performed two standardized functional tasks. By simultaneously recording eye and motion tracking, we precisely segmented participants' visual data using the movement data, yielding a consistent and highly functionally resolved data set of real-world object-interaction tasks. Our results show that participants spend nearly the full duration of a trial fixating on objects relevant to the task, little time fixating on their own hand when reaching toward an object, and slightly more time-although still very little-fixating on the object in their hand when transporting it. A consistent spatial and temporal pattern of fixations was found across participants. In brief, participants fixate an object to be picked up at least half a second before their hand arrives at the object and stay fixated on the object until they begin to transport it, at which point they shift their fixation directly to the drop-off location of the object, where they stay fixated until the object is successfully released. This pattern provides additional evidence of a common system for the integration of vision and object interaction in humans, and is consistent with theoretical frameworks hypothesizing the distribution of attention to future action targets as part of eye and hand-movement preparation. Our results thus aid the understanding of visual attention allocation during planning of object interactions both inside and outside the field of view.


Assuntos
Movimentos Oculares/fisiologia , Percepção de Movimento/fisiologia , Reconhecimento Visual de Modelos/fisiologia , Adulto , Atenção/fisiologia , Feminino , Humanos , Masculino , Adulto Jovem
11.
PLoS One ; 19(1): e0296968, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38265999

RESUMO

INTRODUCTION: Sitting on an unstable surface is a common paradigm to investigate trunk postural control among individuals with low back pain (LBP), by minimizing the influence lower extremities on balance control. Outcomes of many small studies are inconsistent (e.g., some find differences between groups while others do not), potentially due to confounding factors such as age, sex, body mass index [BMI], or clinical presentations. We conducted a systematic review with an individual participant data (IPD) meta-analysis to investigate whether trunk postural control differs between those with and without LBP, and whether the difference between groups is impacted by vision and potential confounding factors. METHODS: We completed this review according to PRISMA-IPD guidelines. The literature was screened (up to 7th September 2023) from five electronic databases: MEDLINE, CINAHL, Embase, Scopus, and Web of Science Core Collection. Outcome measures were extracted that describe unstable seat movements, specifically centre of pressure or seat angle. Our main analyses included: 1) a two-stage IPD meta-analysis to assess the difference between groups and their interaction with age, sex, BMI, and vision on trunk postural control; 2) and a two-stage IPD meta-regression to determine the effects of LBP clinical features (pain intensity, disability, pain catastrophizing, and fear-avoidance beliefs) on trunk postural control. RESULTS: Forty studies (1,821 participants) were included for the descriptive analysis and 24 studies (1,050 participants) were included for the IPD analysis. IPD meta-analyses revealed three main findings: (a) trunk postural control was worse (higher root mean square displacement [RMSdispl], range, and long-term diffusion; lower mean power frequency) among individuals with than without LBP; (b) trunk postural control deteriorated more (higher RMSdispl, short- and long-term diffusion) among individuals with than without LBP when vision was removed; and (c) older age and higher BMI had greater adverse impacts on trunk postural control (higher short-term diffusion; longer time and distance coordinates of the critical point) among individuals with than without LBP. IPD meta-regressions indicated no associations between the limited LBP clinical features that could be considered and trunk postural control. CONCLUSION: Trunk postural control appears to be inferior among individuals with LBP, which was indicated by increased seat movements and some evidence of trunk stiffening. These findings are likely explained by delayed or less accurate corrective responses. SYSTEMATIC REVIEW REGISTRATION: This review has been registered in PROSPERO (registration number: CRD42021124658).


Assuntos
Dor Lombar , Humanos , Postura Sentada , Índice de Massa Corporal , Catastrofização , Análise de Dados
12.
Exp Brain Res ; 230(3): 261-70, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23897132

RESUMO

Evoked autonomic nervous system (ANS) activity may be an important modulator of rapid reactions, generated in the face of urgency and may serve to augment the parallel somatosensory processing to adjust speed of processing. The primary objective of the current study was to temporally pair auditory stimuli with whole body perturbations to determine if conditioning could 'prime' the central nervous system (CNS) to respond faster and with greater ANS reactivity to the auditory stimulus alone. Healthy young participants (n = 19) were seated in a custom chair, which tilted backwards upon the release of an electromagnet and were instructed to reach to grasp a handle located in front of their arm as fast as possible following an auditory cue. Three conditions were completed in the following order: (1) baseline-auditory cue alone (5 trials); (2) paired-auditory cue, followed by a chair tilt 110 ms later (20 trials); and (3) post-pairing-auditory cue alone (5 trials). Participants were not informed of the switch from paired to auditory-only stimuli in the first trial of the post-pairing task condition. Reaction time was measured using electromyography, and autonomic nervous system activity was monitored via the electrodermal response (EDR). The first trial post-pairing had significantly faster reaction time (Δ = 21 ms) and significantly greater EDR amplitude compared to the last trial prior to pairing (baseline). The amplitude of contraction and overall time to handle contact were not significantly different between the first trial post-pairing and the last trial prior to pairing. This study demonstrates that the CNS can be 'primed' to generate rapid reactions and an elevated autonomic response in the absence of whole body instability. This indicates that afferent volume generated following whole body instability is not the only determinant of rapid reactions and emphasizes the importance of physiologic measures of autonomic activity with respect to stimulus-evoked reaction time.


Assuntos
Encéfalo/fisiologia , Extremidade Superior/fisiologia , Estimulação Acústica , Adulto , Sistema Nervoso Autônomo/fisiologia , Eletromiografia , Potenciais Evocados Auditivos/fisiologia , Feminino , Resposta Galvânica da Pele , Força da Mão/fisiologia , Humanos , Masculino , Movimento/fisiologia , Músculo Esquelético/fisiologia , Estimulação Física , Tempo de Reação/fisiologia , Processamento de Sinais Assistido por Computador , Adulto Jovem
13.
J Neural Eng ; 20(2)2023 04 12.
Artigo em Inglês | MEDLINE | ID: mdl-36930976

RESUMO

Objective.Characterizing the task goals of the neural control system for achieving seated stability has been a fundamental challenge in human motor control research. This study aimed to experimentally identify the task goals of the neural control system for seated stability.Approach.Ten able-bodied young individuals participated in our experiments, which allowed us to measure their body motion and muscle activity during perturbed sitting. We used a nonlinear neuromechanical model of the seated human, along with a full-state feedback linearization approach and optimal control theory for identifying the neural control system and characterizing its task goals.Main results.We demonstrated that the neural feedback for trunk stability during seated posture uses angular position, velocity, acceleration, and jerk in a linearized space. The mean squared error between the predicted and measured motor commands was less than 0.6% among all trials and participants, with a median correlation coefficientrof more than 0.9. Our identified optimal neural control primarily used trunk angular acceleration and near-minimum muscle activation to achieve seated stability while keeping the deviations of the trunk angular position and acceleration sufficiently small.Significance.Our proposed approach to neural control system identification relied on a performance criterion (e.g. cost function) explaining what the functional goal is and subsequently, finds the control law that leads to the best performance. Therefore, instead of assuming what control schemes the neural control might utilize (e.g. proportional-integral-derivative control), optimal control allows the motor task and the neuromechanical model to dictate a control law that best describes the physiological process. This approach allows for a mechanistic understanding of the neuromuscular mechanisms involved in seated stability and for inferring the task goals used by the neural control system to achieve the targeted motor behavior. Such neural control characterization can contribute to the development of objective balance evaluation tools and of bio-inspired assistive neuromodulation technologies.


Assuntos
Objetivos , Postura Sentada , Humanos , Retroalimentação , Postura/fisiologia , Sistema Nervoso Central
14.
Sci Rep ; 13(1): 14488, 2023 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-37660133

RESUMO

Many clinical measurement tools for balance have ceiling effects. Technology-based assessments using virtual reality systems such as the Computer-Assisted Rehabilitation Environment (CAREN) may provide a way to develop objective, quantitative measures that scale from low to high levels of difficulty. Our objective was to: (1) develop a performance assessment tool (PAT) for the CAREN; (2) quantify the reliability of the tool; (3) validate the scores against clinical balance measures; and (4) compare the scores from a population with balance impairments to those from able-bodied individuals in a cross-sectional validation study. Three games were developed on the CAREN and tested on 49 participants (36 able-bodied and 13 with impaired mobility). For each module, the corresponding measures were transformed into scores using a series of functions such that ceiling and flooring effects would be minimized. The results showed an association between scores and age, an overlap in scores from impaired high-performance individuals and able-bodied low performance individuals, and a correlation of PAT scores with other clinical tests. Several of the limitations of current clinical tools, including floor and ceiling effects, were overcome by the PAT, suggesting that the PAT can be used to monitor the effect of rehabilitation and training.


Assuntos
Medicina , Humanos , Estudos Transversais , Reprodutibilidade dos Testes , Interface Usuário-Computador , Tecnologia
15.
Clin Biomech (Bristol, Avon) ; 105: 105976, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-37127007

RESUMO

BACKGROUND: The Helen Hayes anatomical model is commonly used in clinical gait analysis with standard medial/lateral knee and thigh markers. METHODS: To quantify soft-tissue artifacts associated with the thigh marker following osseointegration surgery, we added an "implant marker" on the implant extending from the femur, with the objective of identifying the differences in the angular kinematics when using the standard versus implant marker. One female adult with an osseointegrated transfemoral prosthesis walked overground for three trials, and common kinematic measures were calculated from motion capture data. FINDINGS: The results indicated that, when using the thigh marker, a peak of knee varus occurred during the swing phase on the prosthetic side, which is unusual during gait and not feasible for hinge joint prostheses. When using the implant marker, knee varus/valgus was closer to normative. Using the thigh marker, the results showed an internal hip rotation at the start of stance and during the mid and terminal swing phases. In contrast, external hip rotation occurred in both stance and swing phases using the implant marker. Moreover, when selecting the medial knee marker instead of the thigh marker, the angular kinematics and range of motion of knee varus/valgus and hip rotation were comparable to those for the implant marker. INTERPRETATION: This finding suggests that when studying osseointegration gait, using an implant marker will result in more accurate femoral and knee joint motion than using the thigh marker. Changing the selection of markers can reduce the errors of knee varus/valgus and hip kinematics in osseointegrated transfemoral prosthetic gait.


Assuntos
Prótese Articular , Coxa da Perna , Adulto , Humanos , Feminino , Fenômenos Biomecânicos , Osseointegração , Articulação do Joelho/cirurgia , Marcha , Amplitude de Movimento Articular
16.
J Mech Behav Biomed Mater ; 142: 105859, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37071964

RESUMO

Advanced physical head models capable of replicating both global kinematics and intracranial mechanics of the human head are required for head injury research and safety gear assessment. These head surrogates require a complex design to accommodate realistic anatomical details. The scalp is a crucial head component, but its influence on the biomechanical response of such head surrogates remains unclear. This study aimed to evaluate the influence of surrogate scalp material and thickness on head accelerations and intraparenchymal pressures using an advanced physical head-brain model. Scalp pads made from four materials (Vytaflex20, Vytaflex40, Vytaflex50, PMC746) and each material with four thicknesses (2, 4, 6, and 8 mm) were evaluated. The head model attached to the scalp pad was dropped onto a rigid plate from two heights (5 and 19.5 cm) and at three head locations (front, right side, and back). While the selected materials' modulus exhibited a relatively minor effect on head accelerations and coup pressures, the effect of scalp thickness was shown to be major. Moreover, by decreasing the thickness of the head's original scalp by 2 mm and changing the original scalp material from Vytaflex 20 to Vytaflex 40 or Vytaflex 50, the head acceleration biofidelity ratings could improve by 30% and approached the considered rating (0.7) of good biofidelity. This study provides a potential direction for improving the biofidelity of a novel head model that might be a useful tool in head injury research and safety gear tests. This study also has implications for selecting appropriate surrogate scalps in the future design of physical and numerical head models.


Assuntos
Traumatismos Craniocerebrais , Couro Cabeludo , Humanos , Cabeça , Fenômenos Biomecânicos , Aceleração , Encéfalo
17.
Ann Biomed Eng ; 51(8): 1816-1833, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37095278

RESUMO

Headforms are widely used in head injury research and headgear assessment. Common headforms are limited to replicating global head kinematics, although intracranial responses are crucial to understanding brain injuries. This study aimed to evaluate the biofidelity of intracranial pressure (ICP) and the repeatability of head kinematics and ICP of an advanced headform subjected to frontal impacts. Pendulum impacts were performed on the headform using various impact velocities (1-5 m/s) and impactor surfaces (vinyl nitrile 600 foam, PCM746 urethane, and steel) to simulate a previous cadaveric experiment. Head linear accelerations and angular rates in three axes, cerebrospinal fluid ICP (CSFP), and intraparenchymal ICP (IPP) at the front, side, and back of the head were measured. The head kinematics, CSFP, and IPP demonstrated acceptable repeatability with coefficients of variation generally being less than 10%. The BIPED front CSFP peaks and back negative peaks were within the range of the scaled cadaver data (between the minimum and maximum values reported by Nahum et al.), while side CSFPs were 30.9-92.1% greater than the cadaver data. CORrelation and Analysis (CORA) ratings evaluating the closeness of two time histories demonstrated good biofidelity of the front CSFP (0.68-0.72), while the ratings for the side (0.44-0.70) and back CSFP (0.27-0.66) showed a large variation. The BIPED CSFP at each side was linearly related to head linear accelerations with coefficients of determination greater than 0.96. The slopes for the BIPED front and back CSFP-acceleration linear trendlines were not significantly different from cadaver data, whereas the slope for the side CSFP was significantly greater than cadaver data. This study informs future applications and improvements of a novel head surrogate.


Assuntos
Traumatismos Craniocerebrais , Pressão Intracraniana , Humanos , Cabeça/fisiologia , Fenômenos Biomecânicos , Aceleração , Cadáver , Encéfalo
18.
bioRxiv ; 2023 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-38187778

RESUMO

Background: Transcutaneous Spinal Stimulation (TSS) has been shown to promote activation of the lower limb and trunk muscles and is being actively explored for improving the motor outcomes of people with neurological conditions. However, individual responses to TSS vary, and often the muscle responses are insufficient to produce enough force for self-supported standing. Functional electrical stimulation (FES) can activate individual muscles and assist in closing this functional gap, but it introduces questions regarding timing between modalities. Methods: To assess the effects of TSS and FES on force generation, ten neurologically intact participants underwent (1) TSS only, (2) FES only, and (3) TSS + FES. TSS was delivered using four electrodes placed at T10-T11 through the L1-L2 intervertebral spaces simultaneously, while FES was delivered to the skin over the right knee extensors and plantarflexors. For all conditions, TSS and FES were delivered using three 0.5 ms biphasic square-wave pulses at 15 Hz. During the TSS + FES condition, timing between the two modalities was adjusted in increments of » time between pulses (16.5 ms). Results: When TSS preceded FES, a larger force production was observed. We also determined several changes in muscle activation amplitude at different relative stimulus intervals, which help characterize our finding and indicate the facilitating and inhibitory effects of the modalities. Conclusions: Utilizing a delay ranging from 15 to 30 ms between stimuli resulted in higher mean force generation in both the knee and ankle joints, regardless of the selected FES location (Average; knee: 112.0%, ankle: 103.1%).

19.
J Neural Eng ; 19(2)2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35378525

RESUMO

Objective. Determining the roles of underlying mechanisms involved in stabilizing the human trunk during sitting is a fundamental challenge in human motor control. However, distinguishing their roles requires understanding their complex interrelations and describing them with physiologically meaningful neuromechanical parameters. The literature has shown that such mechanistic understanding contributes to diagnosing and improving impaired balance as well as developing assistive technologies for restoring trunk stability. This study aimed to provide a comprehensive characterization of the underlying neuromuscular stabilization mechanisms involved in human sitting.Approach. This study characterized passive and active stabilization mechanisms involved in seated stability by identifying a nonlinear neuromechanical physiologically-meaningful model in ten able-bodied individuals during perturbed sitting via an adaptive unscented Kalman filter to account for the nonlinear time-varying process and measurement noises.Main results. We observed that the passive mechanism provided instant resistance against gravitational disturbances, whereas the active mechanism provided delayed complementary phasic response against external disturbances by activating appropriate trunk muscles while showing non-isometric behavior. The model predicted the trunk sway behavior during perturbed sitting with high accuracy and correlation (average: 0.0007 (rad2) and 86.77%). This allows a better mechanistic understanding of the roles of passive and active stabilization mechanisms involved in sitting.Significance. Our characterization approach accounts for the inherently nonlinear behavior of the neuromuscular mechanisms and physiological uncertainties, while allowing for real-time tracking and correction of parameters' variations due to external disturbances and muscle fatigue. The outcome of our research, for the first time, (a) allows a better mechanistic understanding of the roles of passive and active stabilization mechanisms involved in sitting; (b) enables objective evaluation and targeted rehabilitative interventions for impaired balance; facilitate bio-inspired designs of assistive technologies, and (c) opens new horizons in mathematical identification of neuromechanical mechanisms employed in the stable control of human body postures and motions.


Assuntos
Postura , Postura Sentada , Fenômenos Biomecânicos , Humanos , Fadiga Muscular , Músculo Esquelético/fisiologia , Equilíbrio Postural , Postura/fisiologia
20.
Artigo em Inglês | MEDLINE | ID: mdl-35709114

RESUMO

Functional electrical stimulation (FES) can be used to initiate lower limb muscle contractions and has been widely applied in gait rehabilitation. Establishing the correct timing of FES activation during each phase of the gait (walking) cycle remains challenging as most FES systems rely on open-loop control, whereby the controller receives no feedback about joint kinematics and instead relies on predetermined/timed muscle stimulation. The objective of this study was to develop and validate a closed-loop FES-based control solution for gait rehabilitation using a finite state machine (FSM) model. A two-phased study approach was taken: (1) Experimentally-Informed Study: A neuromuscular-derived FSM model was developed to drive closed-loop FES-based control for gait rehabilitation. The finite states were determined using electromyography and joint kinematics data of 12 non-disabled adults, collected during treadmill walking. The gait cycles were divided into four states, namely: swing-to-stance, push off, pre-swing, and toe up. (2) Simulation Study: A closed-loop FES-based control solution that employed the resulting FSM model, was validated through comparisons of neuro-musculo-skeletal computer simulations of impaired versus healthy gait. This closed-loop controller yielded steadier simulated impaired gait, in comparison to an open-loop alternative. The simulation results confirmed that accurate timing of FES activation during the gait cycle, as informed by kinematics data, is important to natural gait retraining. The closed-loop FES-based solution, introduced in this study, contributes to the repository of gait rehabilitation control options and offers the advantage of being simplistic to implement. Furthermore, this control solution is expected to integrate well with powered exoskeleton technologies.


Assuntos
Terapia por Estimulação Elétrica , Adulto , Estimulação Elétrica , Terapia por Estimulação Elétrica/métodos , Eletromiografia , Marcha/fisiologia , Humanos , Caminhada/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA