Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
Mol Genet Genomics ; 299(1): 17, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38416243

RESUMO

Barley ranks fourth in global cereal production and is primarily grown for animal feed and malt. Hordeins, the principal barley seed storage proteins, are homologous to wheat gluten and when ingested elicit an immune response in people with Coeliac disease. Risø 1508 is a chemically induced barley mutant with low hordein levels imparted by the lys3.a locus that is reported to be caused by an SNP in the barley prolamin-box binding factor gene (BPBF). Reports suggest the lys3.a locus prevents CG DNA demethylation at the Hor2 (B-hordein) promoter during grain development subsequently causing hypermethylation and inhibiting gene expression. In lys3.a mutants, endosperm-specific ß-amylase (Bmy1) and Hor2 are similarly downregulated during grain development and thus we hypothesize that the inability to demethylate the Bmy1 promoter CG islands is also causing Bmy1 downregulation. We use whole-genome bisulfite sequencing and mRNA-seq on developing endosperms from two lys3.a mutants and a lys3.b mutant to determine all downstream genes affected by lys3 mutations. RNAseq analysis identified 306 differentially expressed genes (DEGs) shared between all mutants and their parents and 185 DEGs shared between both lys3.a mutants and their parents. Global DNA methylation levels and promoter CG DNA methylation levels were not significantly different between the mutants and their parents and thus refute the hypothesis that the lys3.a mutant's phenotype is caused by dysregulation of demethylation during grain development. The majority of DEGs were downregulated (e.g., B- and C-hordeins and Bmy1), but some DEGs were upregulated (e.g., ß-glucosidase, D-hordein) suggesting compensatory effects and potentially explaining the low ß-glucan phenotype observed in lys3.a germplasm. These findings have implications on human health and provide novel insight to barley breeders regarding the use of BPBF transcription factor mutants to create gluten-free barley varieties.


Assuntos
Hordeum , Fatores de Transcrição , Animais , Humanos , Prolaminas , Hordeum/genética , Endosperma/genética , Grão Comestível/genética , Metilação de DNA/genética , Glutens
2.
Gene ; 928: 148799, 2024 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-39067543

RESUMO

GSHO 2096 is a near isogenic barley line with extremely high grain ß-amylase activity, a desirable trait in the malting and brewing industry. High levels of grain ß-amylase activity are caused by a surge in endosperm-specific ß-amylase (Bmy1) gene expression during the early stages of grain development with high expression levels persisting throughout development. Origins of the high ß-amylase activity trait are perplexing considering GSHO 2096 is not supposed to have grain ß-amylase activity. GSHO 2096 is reported to be derived from a Bowman x Risø 1508 cross followed by recurrent backcrossing to Bowman (BC5). Risø 1508 carries a mutated form of the barley prolamin binding factor, which is responsible for Bmy1 expression during grain development. Thus, the pedigree of GSHO 2096 was explored to determine the potential origins of the high grain ß-amylase trait. Genotyping using the barley 50k iSelect SNP array revealed Bowman and GSHO 2096 were very similar (95.4 %) and provided evidence that both Risø 56 and 1508 are in the pedigree. Risø mutants 56 and 1508 both have perturbed hordein gene expression leading to a discernable pattern using SDS-PAGE. GSHO 2096 and Risø 56 have the same hordein pattern whereas Bowman and Risø 1508 have unique patterns. RNAseq revealed that Hor2 (B-hordein) gene expression was completely downregulated making it unique as the only known line with Bmy1 expression without Hor2 co-expression. Regardless of pedigree, GSHO 2096 remains an extremely valuable high ß-amylase activity line with potential utilization in breeding for malt quality.


Assuntos
Endosperma , Regulação da Expressão Gênica de Plantas , Hordeum , Proteínas de Plantas , beta-Amilase , Hordeum/genética , Hordeum/enzimologia , beta-Amilase/genética , beta-Amilase/metabolismo , Endosperma/genética , Endosperma/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Glutens/genética , Glutens/metabolismo , Grão Comestível/genética , Polimorfismo de Nucleotídeo Único , Genótipo
3.
Biol Methods Protoc ; 8(1): bpad034, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38116324

RESUMO

Reverse transcriptase quantitative polymerase chain reaction (RT-qPCR) followed by the 2-ΔΔCt method is the most common way to measure transcript levels for relative gene expression assays. The quality of an RT-qPCR assay is dependent upon the identification and validation of reference genes to normalize gene expression data. The so-called housekeeping genes are commonly used as internal reference genes because they are assumed to be ubiquitously expressed at stable levels. Commonly, researchers do not validate their reference genes but rely on historical reference genes or previously validated genes from an unrelated experiment. Using previously validated reference genes to assess gene expression changes occurring during malting resulted in extensive variability. Therefore, a new method was tested and validated to circumvent the use of internal reference genes. Total mouse RNA was chosen as the external reference RNA and a suite of primer sets to putatively stable mouse genes was created to identify stably expressed genes for use as an external reference gene. cDNA was created by co-amplifying total mouse RNA, as an RNA spike-in, and barley RNA. When using the external reference genes to normalize malting gene expression data, standard deviations were significantly reduced and significant differences in transcript abundance were observed, whereas when using the internal reference genes, standard deviations were larger with no significant differences seen. Furthermore, external reference genes were more accurate at assessing expression levels in malting and developing grains, whereas the internal reference genes overestimated abundance in developing grains and underestimated abundance in malting grains.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA