Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Intervalo de ano de publicação
1.
Neural Netw ; 169: 698-712, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37976594

RESUMO

Synthetic aperture radar (SAR) images are widely used in remote sensing. Interpreting SAR images can be challenging due to their intrinsic speckle noise and grayscale nature. To address this issue, SAR colorization has emerged as a research direction to colorize gray scale SAR images while preserving the original spatial information and radiometric information. However, this research field is still in its early stages, and many limitations can be highlighted. In this paper, we propose a full research line for supervised learning-based approaches to SAR colorization. Our approach includes a protocol for generating synthetic color SAR images, several baselines, and an effective method based on the conditional generative adversarial network (cGAN) for SAR colorization. We also propose numerical assessment metrics for the problem at hand. To our knowledge, this is the first attempt to propose a research line for SAR colorization that includes a protocol, a benchmark, and a complete performance evaluation. Our extensive tests demonstrate the effectiveness of our proposed cGAN-based network for SAR colorization. The code is available at https://github.com/shenkqtx/SAR-Colorization-Benchmarking-Protocol.


Assuntos
Benchmarking , Aprendizado Profundo , Radar , Conhecimento
2.
Artigo em Inglês | MEDLINE | ID: mdl-37527326

RESUMO

Convolutional neural networks (CNNs) have recently achieved outstanding performance for hyperspectral (HS) and multispectral (MS) image fusion. However, CNNs cannot explore the long-range dependence for HS and MS image fusion because of their local receptive fields. To overcome this limitation, a transformer is proposed to leverage the long-range dependence from the network inputs. Because of the ability of long-range modeling, the transformer overcomes the sole CNN on many tasks, whereas its use for HS and MS image fusion is still unexplored. In this article, we propose a spectral-spatial transformer (SST) to show the potentiality of transformers for HS and MS image fusion. We devise first two branches to extract spectral and spatial features in the HS and MS images by SST blocks, which can explore the spectral and spatial long-range dependence, respectively. Afterward, spectral and spatial features are fused feeding the result back to spectral and spatial branches for information interaction. Finally, the high-resolution (HR) HS image is reconstructed by dense links from all the fused features to make full use of them. The experimental analysis demonstrates the high performance of the proposed approach compared with some state-of-the-art (SOTA) methods.

3.
IEEE Trans Neural Netw Learn Syst ; 34(11): 9088-9101, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35263264

RESUMO

Pansharpening refers to the fusion of a panchromatic (PAN) image with a high spatial resolution and a multispectral (MS) image with a low spatial resolution, aiming to obtain a high spatial resolution MS (HRMS) image. In this article, we propose a novel deep neural network architecture with level-domain-based loss function for pansharpening by taking into account the following double-type structures, i.e., double-level, double-branch, and double-direction, called as triple-double network (TDNet). By using the structure of TDNet, the spatial details of the PAN image can be fully exploited and utilized to progressively inject into the low spatial resolution MS (LRMS) image, thus yielding the high spatial resolution output. The specific network design is motivated by the physical formula of the traditional multi-resolution analysis (MRA) methods. Hence, an effective MRA fusion module is also integrated into the TDNet. Besides, we adopt a few ResNet blocks and some multi-scale convolution kernels to deepen and widen the network to effectively enhance the feature extraction and the robustness of the proposed TDNet. Extensive experiments on reduced- and full-resolution datasets acquired by WorldView-3, QuickBird, and GaoFen-2 sensors demonstrate the superiority of the proposed TDNet compared with some recent state-of-the-art pansharpening approaches. An ablation study has also corroborated the effectiveness of the proposed approach. The code is available at https://github.com/liangjiandeng/TDNet.

4.
Artigo em Inglês | MEDLINE | ID: mdl-37027760

RESUMO

Pansharpening refers to the fusion of a low spatial-resolution multispectral image with a high spatial-resolution panchromatic image. In this paper, we propose a novel low-rank tensor completion (LRTC)-based framework with some regularizers for multispectral image pansharpening, called LRTCFPan. The tensor completion technique is commonly used for image recovery, but it cannot directly perform the pansharpening or, more generally, the super-resolution problem because of the formulation gap. Different from previous variational methods, we first formulate a pioneering image super-resolution (ISR) degradation model, which equivalently removes the downsampling operator and transforms the tensor completion framework. Under such a framework, the original pansharpening problem is realized by the LRTC-based technique with some deblurring regularizers. From the perspective of regularizer, we further explore a local-similarity-based dynamic detail mapping (DDM) term to more accurately capture the spatial content of the panchromatic image. Moreover, the low-tubal-rank property of multispectral images is investigated, and the low-tubal-rank prior is introduced for better completion and global characterization. To solve the proposed LRTCFPan model, we develop an alternating direction method of multipliers (ADMM)-based algorithm. Comprehensive experiments at reduced-resolution (i.e., simulated) and full-resolution (i.e., real) data exhibit that the LRTCFPan method significantly outperforms other state-of-the-art pansharpening methods. The code is publicly available at: https://github.com/zhongchengwu/code_LRTCFPan.

5.
IEEE Trans Cybern ; 53(7): 4148-4161, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37022388

RESUMO

Hyperspectral image super-resolution (HISR) is about fusing a low-resolution hyperspectral image (LR-HSI) and a high-resolution multispectral image (HR-MSI) to generate a high-resolution hyperspectral image (HR-HSI). Recently, convolutional neural network (CNN)-based techniques have been extensively investigated for HISR yielding competitive outcomes. However, existing CNN-based methods often require a huge amount of network parameters leading to a heavy computational burden, thus, limiting the generalization ability. In this article, we fully consider the characteristic of the HISR, proposing a general CNN fusion framework with high-resolution guidance, called GuidedNet. This framework consists of two branches, including 1) the high-resolution guidance branch (HGB) that can decompose the high-resolution guidance image into several scales and 2) the feature reconstruction branch (FRB) that takes the low-resolution image and the multiscaled high-resolution guidance images from the HGB to reconstruct the high-resolution fused image. GuidedNet can effectively predict the high-resolution residual details that are added to the upsampled HSI to simultaneously improve spatial quality and preserve spectral information. The proposed framework is implemented using recursive and progressive strategies, which can promote high performance with a significant network parameter reduction, even ensuring network stability by supervising several intermediate outputs. Additionally, the proposed approach is also suitable for other resolution enhancement tasks, such as remote sensing pansharpening and single-image super-resolution (SISR). Extensive experiments on simulated and real datasets demonstrate that the proposed framework generates state-of-the-art outcomes for several applications (i.e., HISR, pansharpening, and SISR). Finally, an ablation study and more discussions assessing, for example, the network generalization, the low computational cost, and the fewer network parameters, are provided to the readers. The code link is: https://github.com/Evangelion09/GuidedNet.

6.
IEEE Trans Neural Netw Learn Syst ; 33(12): 7251-7265, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34106864

RESUMO

Hyperspectral images (HSIs) are of crucial importance in order to better understand features from a large number of spectral channels. Restricted by its inner imaging mechanism, the spatial resolution is often limited for HSIs. To alleviate this issue, in this work, we propose a simple and efficient architecture of deep convolutional neural networks to fuse a low-resolution HSI (LR-HSI) and a high-resolution multispectral image (HR-MSI), yielding a high-resolution HSI (HR-HSI). The network is designed to preserve both spatial and spectral information thanks to a new architecture based on: 1) the use of the LR-HSI at the HR-MSI's scale to get an output with satisfied spectral preservation and 2) the application of the attention and pixelShuffle modules to extract information, aiming to output high-quality spatial details. Finally, a plain mean squared error loss function is used to measure the performance during the training. Extensive experiments demonstrate that the proposed network architecture achieves the best performance (both qualitatively and quantitatively) compared with recent state-of-the-art HSI super-resolution approaches. Moreover, other significant advantages can be pointed out by the use of the proposed approach, such as a better network generalization ability, a limited computational burden, and the robustness with respect to the number of training samples. Please find the source code and pretrained models from https://liangjiandeng.github.io/Projects_Res/HSRnet_2021tnnls.html.

7.
Sci Rep ; 10(1): 16213, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-33004925

RESUMO

Italy was the first, among all the European countries, to be strongly hit by the COVID-19 pandemic outbreak caused by the severe acute respiratory syndrome coronavirus 2 (Sars-CoV-2). The virus, proven to be very contagious, infected more than 9 million people worldwide (in June 2020). Nevertheless, it is not clear the role of air pollution and meteorological conditions on virus transmission. In this study, we quantitatively assessed how the meteorological and air quality parameters are correlated to the COVID-19 transmission in two large metropolitan areas in Northern Italy as Milan and Florence and in the autonomous province of Trento. Milan, capital of Lombardy region, it is considered the epicenter of the virus outbreak in Italy. Our main findings highlight that temperature and humidity related variables are negatively correlated to the virus transmission, whereas air pollution (PM2.5) shows a positive correlation (at lesser degree). In other words, COVID-19 pandemic transmission prefers dry and cool environmental conditions, as well as polluted air. For those reasons, the virus might easier spread in unfiltered air-conditioned indoor environments. Those results will be supporting decision makers to contain new possible outbreaks.


Assuntos
Poluição do Ar/estatística & dados numéricos , Infecções por Coronavirus/epidemiologia , Umidade , Pneumonia Viral/epidemiologia , Temperatura , COVID-19 , Cidades/estatística & dados numéricos , Infecções por Coronavirus/transmissão , Humanos , Itália , Pandemias , Pneumonia Viral/transmissão , População Urbana/estatística & dados numéricos
8.
IEEE Trans Image Process ; 27(7): 3418-3431, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29671744

RESUMO

Pansharpening is usually related to the fusion of a high spatial resolution but low spectral resolution (panchromatic) image with a high spectral resolution but low spatial resolution (multispectral) image. The calculation of injection coefficients through regression is a very popular and powerful approach. These coefficients are usually estimated at reduced resolution. In this paper, the estimation of the injection coefficients at full resolution for regression-based pansharpening approaches is proposed. To this aim, an iterative algorithm is proposed and studied. Its convergence, whatever the initial guess, is demonstrated in all the practical cases and the reached asymptotic value is analytically calculated. The performance is assessed both at reduced resolution and at full resolution on four data sets acquired by the IKONOS sensor and the WorldView-3 sensor. The proposed full scale approach always shows the best performance with respect to the benchmark consisting of state-of-the-art pansharpening methods.

9.
IEEE Trans Image Process ; 27(9): 4330-4344, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29870351

RESUMO

Pansharpening is an important application in remote sensing image processing. It can increase the spatial-resolution of a multispectral image by fusing it with a high spatial-resolution panchromatic image in the same scene, which brings great favor for subsequent processing such as recognition, detection, etc. In this paper, we propose a continuous modeling and sparse optimization based method for the fusion of a panchromatic image and a multispectral image. The proposed model is mainly based on reproducing kernel Hilbert space (RKHS) and approximated Heaviside function (AHF). In addition, we also propose a Toeplitz sparse term for representing the correlation of adjacent bands. The model is convex and solved by the alternating direction method of multipliers which guarantees the convergence of the proposed method. Extensive experiments on many real datasets collected by different sensors demonstrate the effectiveness of the proposed technique as compared with several state-of-the-art pansharpening approaches.

10.
IEEE Trans Image Process ; 25(6): 2882-2895, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28113904

RESUMO

Nonlinear decomposition schemes constitute an alternative to classical approaches for facing the problem of data fusion. In this paper, we discuss the application of this methodology to a popular remote sensing application called pansharpening, which consists in the fusion of a low resolution multispectral image and a high-resolution panchromatic image. We design a complete pansharpening scheme based on the use of morphological half gradient operators and demonstrate the suitability of this algorithm through the comparison with the state-of-the-art approaches. Four data sets acquired by the Pleiades, Worldview-2, Ikonos, and Geoeye-1 satellites are employed for the performance assessment, testifying the effectiveness of the proposed approach in producing top-class images with a setting independent of the specific sensor.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA