Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Int J Mol Sci ; 24(1)2022 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-36613518

RESUMO

Metastatic melanoma is one of the most aggressive tumors, with frequent mutations affecting components of the MAPK pathway, mainly protein kinase BRAF. Despite promising initial response to BRAF inhibitors, melanoma progresses due to development of resistance. In addition to frequent reactivation of MAPK or activation of PI3K/AKT signaling pathways, recently, the p53 pathway has been shown to contribute to acquired resistance to targeted MAPK inhibitor therapy. Canonical tumor suppressor p53 is inactivated in melanoma by diverse mechanisms. The TP53 gene and two other family members, TP63 and TP73, encode numerous protein isoforms that exhibit diverse functions during tumorigenesis. The p53 family isoforms can be produced by usage of alternative promoters and/or splicing on the C- and N-terminus. Various p53 family isoforms are expressed in melanoma cell lines and tumor samples, and several of them have already shown to have specific functions in melanoma, affecting proliferation, survival, metastatic potential, invasion, migration, and response to therapy. Of special interest are p53 family isoforms with increased expression and direct involvement in acquired resistance to MAPK inhibitors in melanoma cells, implying that modulating their expression or targeting their functional pathways could be a potential therapeutic strategy to overcome resistance to MAPK inhibitors in melanoma.


Assuntos
Melanoma , Proteína Supressora de Tumor p53 , Humanos , Proteína Supressora de Tumor p53/genética , Genes p53 , Proteínas Proto-Oncogênicas B-raf/genética , Fosfatidilinositol 3-Quinases/metabolismo , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/patologia , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Mutação , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral
2.
Int J Mol Sci ; 23(17)2022 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-36077308

RESUMO

Regardless of the significant improvements in treatment of melanoma, the majority of patients develop resistance whose mechanisms are still not completely understood. Hence, we generated and characterized two melanoma-derived cell lines, primary WM793B and metastatic A375M, with acquired resistance to the RAF inhibitor vemurafenib. The morphology of the resistant primary WM793B melanoma cells showed EMT-like features and exhibited a hybrid phenotype with both epithelial and mesenchymal characteristics. Surprisingly, the vemurafenib-resistant melanoma cells showed a decreased migration ability but also displayed a tendency to collective migration. Signaling pathway analysis revealed the reactivation of MAPK and the activation of the PI3K/AKT pathway depending on the vemurafenib-resistant cell line. The acquired resistance to vemurafenib caused resistance to chemotherapy in primary WM793B melanoma cells. Furthermore, the cell-cycle analysis and altered levels of cell-cycle regulators revealed that resistant cells likely transiently enter into cell cycle arrest at the G0/G1 phase and gain slow-cycling cell features. A decreased level of NME1 and NME2 metastasis suppressor proteins were found in WM793B-resistant primary melanoma, which is possibly the result of vemurafenib-acquired resistance and is one of the causes of increased PI3K/AKT signaling. Further studies are needed to reveal the vemurafenib-dependent negative regulators of NME proteins, their role in PI3K/AKT signaling, and their influence on vemurafenib-resistant melanoma cell characteristics.


Assuntos
Melanoma , Proteínas Proto-Oncogênicas B-raf , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/genética , Humanos , Indóis/farmacologia , Indóis/uso terapêutico , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/patologia , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas B-raf/genética , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Sulfonamidas/farmacologia , Sulfonamidas/uso terapêutico , Vemurafenib/farmacologia , Vemurafenib/uso terapêutico
3.
Nature ; 524(7563): 47-53, 2015 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-26168399

RESUMO

We have sequenced the genomes of 110 small cell lung cancers (SCLC), one of the deadliest human cancers. In nearly all the tumours analysed we found bi-allelic inactivation of TP53 and RB1, sometimes by complex genomic rearrangements. Two tumours with wild-type RB1 had evidence of chromothripsis leading to overexpression of cyclin D1 (encoded by the CCND1 gene), revealing an alternative mechanism of Rb1 deregulation. Thus, loss of the tumour suppressors TP53 and RB1 is obligatory in SCLC. We discovered somatic genomic rearrangements of TP73 that create an oncogenic version of this gene, TP73Δex2/3. In rare cases, SCLC tumours exhibited kinase gene mutations, providing a possible therapeutic opportunity for individual patients. Finally, we observed inactivating mutations in NOTCH family genes in 25% of human SCLC. Accordingly, activation of Notch signalling in a pre-clinical SCLC mouse model strikingly reduced the number of tumours and extended the survival of the mutant mice. Furthermore, neuroendocrine gene expression was abrogated by Notch activity in SCLC cells. This first comprehensive study of somatic genome alterations in SCLC uncovers several key biological processes and identifies candidate therapeutic targets in this highly lethal form of cancer.


Assuntos
Genoma Humano/genética , Genômica , Neoplasias Pulmonares/genética , Mutação/genética , Carcinoma de Pequenas Células do Pulmão/genética , Alelos , Animais , Linhagem Celular Tumoral , Pontos de Quebra do Cromossomo , Ciclina D1/genética , Proteínas de Ligação a DNA/genética , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Humanos , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Masculino , Camundongos , Sistemas Neurossecretores/metabolismo , Sistemas Neurossecretores/patologia , Proteínas Nucleares/genética , Receptores Notch/genética , Receptores Notch/metabolismo , Proteína do Retinoblastoma/genética , Transdução de Sinais/genética , Carcinoma de Pequenas Células do Pulmão/metabolismo , Carcinoma de Pequenas Células do Pulmão/patologia , Proteína Tumoral p73 , Proteína Supressora de Tumor p53/genética , Proteínas Supressoras de Tumor/genética
4.
Molecules ; 26(4)2021 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-33562817

RESUMO

Oxidative stress (OS) induced by the disturbed homeostasis of metal ions is one of the pivotal factors contributing to neurodegeneration. The aim of the present study was to investigate the effects of flavonoid myricetin on copper-induced toxicity in neuroblastoma SH-SY5Y cells. As determined by the MTT method, trypan blue exclusion assay and measurement of ATP production, myricetin heightened the toxic effects of copper and exacerbated cell death. It also increased copper-induced generation of reactive oxygen species, indicating the prooxidative nature of its action. Furthermore, myricetin provoked chromatin condensation and loss of membrane integrity without caspase-3 activation, suggesting the activation of both caspase-independent programmed cell death and necrosis. At the protein level, myricetin-induced upregulation of PARP-1 and decreased expression of Bcl-2, whereas copper-induced changes in the expression of p53, p73, Bax and NME1 were not further affected by myricetin. Inhibitors of ERK1/2 and JNK kinases, protein kinase A and L-type calcium channels exacerbated the toxic effects of myricetin, indicating the involvement of intracellular signaling pathways in cell death. We also employed atomic force microscopy (AFM) to evaluate the morphological and mechanical properties of SH-SY5Y cells at the nanoscale. Consistent with the cellular and molecular methods, this biophysical approach also revealed a myricetin-induced increase in cell surface roughness and reduced elasticity. Taken together, we demonstrated the adverse effects of myricetin, pointing out that caution is required when considering powerful antioxidants for adjuvant therapy in copper-related neurodegeneration.


Assuntos
Cobre/toxicidade , Flavonoides/toxicidade , Neurotoxinas/toxicidade , Fenômenos Biomecânicos/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Interações Medicamentosas , Humanos , Estresse Oxidativo/efeitos dos fármacos
5.
Nucleic Acids Res ; 42(4): 2295-307, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24285298

RESUMO

Bacillus subtilis RecA is important for spore resistance to DNA damage, even though spores contain a single non-replicating genome. We report that inactivation of RecA or its accessory factors, RecF, RecO, RecR and RecX, drastically reduce survival of mature dormant spores to ultrahigh vacuum desiccation and ionizing radiation that induce single strand (ss) DNA nicks and double-strand breaks (DSBs). The presence of non-cleavable LexA renders spores less sensitive to DSBs, and spores impaired in DSB recognition or end-processing show sensitivities to X-rays similar to wild-type. In vitro RecA cannot compete with SsbA for nucleation onto ssDNA in the presence of ATP. RecO is sufficient, at least in vitro, to overcome SsbA inhibition and stimulate RecA polymerization on SsbA-coated ssDNA. In the presence of SsbA, RecA slightly affects DNA replication in vitro, but addition of RecO facilitates RecA-mediated inhibition of DNA synthesis. We propose that repairing of the DNA lesions generates a replication stress to germinating spores, and the RecA·ssDNA filament might act by preventing potentially dangerous forms of DNA repair occurring during replication. RecA might stabilize a stalled fork or prevent or promote dissolution of reversed forks rather than its cleavage that should require end-processing.


Assuntos
Bacillus subtilis/genética , Proteínas de Bactérias/fisiologia , Quebras de DNA de Cadeia Dupla , Recombinases Rec A/fisiologia , Bacillus subtilis/efeitos da radiação , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Replicação do DNA , Enzimas de Restrição do DNA/genética , Enzimas de Restrição do DNA/fisiologia , DNA de Cadeia Simples/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/fisiologia , Mutação , Recombinases Rec A/genética , Recombinases Rec A/metabolismo , Resposta SOS em Genética , Esporos Bacterianos/genética , Esporos Bacterianos/efeitos da radiação
6.
Life (Basel) ; 13(12)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38137892

RESUMO

Diabetes mellitus is a complex metabolic disease associated with reduced synaptic plasticity, atrophy of the hippocampus, and cognitive decline. Cognitive impairment results from several pathological mechanisms, including increased levels of advanced glycation end products (AGEs) and their receptors, prolonged oxidative stress and impaired activity of endogenous mechanisms of antioxidant defense, neuroinflammation driven by the nuclear factor kappa-light-chain enhancer of activated B cells (NF-κB), decreased expression of brain-derived neurotrophic factor (BDNF), and disturbance of signaling pathways involved in neuronal survival and cognitive functioning. There is increasing evidence that dietary interventions can reduce the risk of various diabetic complications. In this context, flavonols, a highly abundant class of flavonoids in the human diet, are appreciated as a potential pharmacological intervention against cognitive decline in diabetes. In preclinical studies, flavonols have shown neuroprotective, antioxidative, anti-inflammatory, and memory-enhancing properties based on their ability to regulate glucose levels, attenuate oxidative stress and inflammation, promote the expression of neurotrophic factors, and regulate signaling pathways. The present review gives an overview of the molecular mechanisms involved in diabetes-induced cognitive dysfunctions and the results of preclinical studies showing that flavonols have the ability to alleviate cognitive impairment. Although the results from animal studies are promising, clinical and epidemiological studies are still needed to advance our knowledge on the potential of flavonols to improve cognitive decline in diabetic patients.

7.
Arch Microbiol ; 194(9): 759-67, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22484477

RESUMO

Mutations in the RNA polymerase ß-subunit gene rpoB causing resistance to rifampicin (Rif(R)) in Bacillus subtilis were previously shown to lead to alterations in the expression of a number of global phenotypes known to be under transcriptional control. To better understand the influence of rpoB mutations on sporulation and spore resistance to heat and chemicals, cells and spores of the wild-type and twelve distinct congenic Rif(R) mutant strains of B. subtilis were tested. Different levels of glucose catabolite repression during sporulation and spore resistance to heat and chemicals were observed in the Rif(R) mutants, indicating the important role played by the RNA polymerase ß-subunit, not only in the catalytic aspect of transcription, but also in the initiation of sporulation and in the spore resistance properties of B. subtilis.


Assuntos
Alelos , Anti-Infecciosos/farmacologia , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/fisiologia , RNA Polimerases Dirigidas por DNA/genética , Temperatura Alta , Esporos Bacterianos/efeitos dos fármacos , Bacillus subtilis/genética , Farmacorresistência Bacteriana/genética , Formaldeído/farmacologia , Glucose/metabolismo , Glutaral/farmacologia , Peróxido de Hidrogênio/farmacologia , Mutação , Esporos Bacterianos/genética , Água/metabolismo
8.
Antioxidants (Basel) ; 11(10)2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36290771

RESUMO

In the last few decades, endocannabinoids, plant-derived cannabinoids and synthetic cannabinoids have received growing interest as treatment options in neurodegenerative conditions. In various experimental settings, they have displayed antioxidative, anti-inflammatory, antiapoptotic, immunomodulatory, and neuroprotective effects. However, due to numerous targets and downstream effectors of their action, the cellular and molecular mechanisms underlying these effects are rather complex and still under discussion. Cannabinoids are able to neutralize free radicals and modulate the production of reactive oxygen species and the activity of antioxidative systems acting on CB1 and CB2 cannabinoid receptors. The activation of CB1 receptors stimulates signaling pathways involved in antioxidative defense and survival (such as the phosphoinositide 3-kinase (PI3K)/Akt, mitogen-activated protein kinase (MAPK), and Nrf2 pathways) and regulates glutamatergic signaling, the activation of N-methyl-D-aspartate (NMDA) receptors, calcium influx, and the induction of Ca2+-regulated signaling cascades, whereas the neuroprotective effects mediated by CB2 receptors are due to the suppression of microglial activation and the release of prooxidative and proinflammatory mediators. This review summarizes the main molecular mechanisms and new advances in understanding the antioxidative and neuroprotective effects of cannabinoids. Because of the plethora of possible pharmacological interventions related to oxidative stress and cannabinoid-mediated neuroprotection, future research should be directed towards a better understanding of the interplay between activated signal transduction pathways and molecular targets with the aim to improve treatment options and efficacy by targeting the endocannabinoid system.

9.
J Bacteriol ; 193(18): 4643-51, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21764927

RESUMO

The RecA protein in its functional state is in complex with single-stranded DNA, i.e., in the form of a RecA filament. In SOS induction, the RecA filament functions as a coprotease, enabling the autodigestion of the LexA repressor. The RecA filament can be formed by different mechanisms, but all of them require three enzymatic activities essential for the processing of DNA double-stranded ends. These are helicase, 5'-3' exonuclease, and RecA loading onto single-stranded DNA (ssDNA). In some mutants, the SOS response can be expressed constitutively during the process of normal DNA metabolism. The RecA730 mutant protein is able to form the RecA filament without the help of RecBCD and RecFOR mediators since it better competes with the single-strand binding (SSB) protein for ssDNA. As a consequence, the recA730 mutants show high constitutive SOS expression. In the study described in this paper, we studied the genetic requirements for constitutive SOS expression in recA730 mutants. Using a ß-galactosidase assay, we showed that the constitutive SOS response in recA730 mutants exhibits different requirements in different backgrounds. In a wild-type background, the constitutive SOS response is partially dependent on RecBCD function. In a recB1080 background (the recB1080 mutation retains only helicase), constitutive SOS expression is partially dependent on RecBCD helicase function and is strongly dependent on RecJ nuclease. Finally, in a recB-null background, the constitutive SOS expression of the recA730 mutant is dependent on the RecJ nuclease. Our results emphasize the importance of the 5'-3' exonuclease for high constitutive SOS expression in recA730 mutants and show that RecBCD function can further enhance the excellent intrinsic abilities of the RecA730 protein in vivo.


Assuntos
Escherichia coli/genética , Regulação Bacteriana da Expressão Gênica , Mutação de Sentido Incorreto , Recombinases Rec A/genética , Resposta SOS em Genética , Proteínas de Escherichia coli/metabolismo , Exodesoxirribonuclease V/metabolismo , Exodesoxirribonucleases/metabolismo , Genes Reporter , beta-Galactosidase/genética , beta-Galactosidase/metabolismo
10.
Cancers (Basel) ; 13(12)2021 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-34207603

RESUMO

The p53 tumor suppressor protein is crucial for cell growth control and the maintenance of genomic stability. Later discovered, p63 and p73 share structural and functional similarity with p53. To understand the p53 pathways more profoundly, all family members should be considered. Each family member possesses two promoters and alternative translation initiation sites, and they undergo alternative splicing, generating multiple isoforms. The resulting isoforms have important roles in carcinogenesis, while their expression is dysregulated in several human tumors including colorectal carcinoma, which makes them potential targets in cancer treatment. Their activities arise, at least in part, from the ability to form tetramers that bind to specific DNA sequences and activate the transcription of target genes. In this review, we summarize the current understanding of the biological activities and regulation of the p53/p73 isoforms, highlighting their role in colorectal tumorigenesis. The analysis of the expression patterns of the p53/p73 isoforms in human cancers provides an important step in the improvement of cancer therapy. Furthermore, the interactions among the p53 family members which could modulate normal functions of the canonical p53 in tumor tissue are described. Lastly, we emphasize the importance of clinical studies to assess the significance of combining the deregulation of different members of the p53 family to define the outcome of the disease.

11.
Cancers (Basel) ; 13(20)2021 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-34680379

RESUMO

Cutaneous melanoma is the most aggressive form of skin cancer. Despite the significant advances in the management of melanoma in recent decades, it still represents a challenge for clinicians. The TP53 gene, the guardian of the genome, which is altered in more than 50% of human cancers, is rarely mutated in melanoma. More recently, researchers started to appreciate the importance of shorter p53 isoforms as potential modifiers of the p53-dependent responses. We analyzed the expression of p53 and p73 isoforms both at the RNA and protein level in a panel of melanoma-derived cell lines with different TP53 and BRAF status, in normal conditions or upon treatment with common anti-cancer DNA damaging agents or targeted therapy. Using lentiviral vectors, we also generated stable clones of H1299 p53 null cells over-expressing the less characterized isoforms Δ160p53α, Δ160p53ß, and Δ160p53γ. Further, we obtained two melanoma-derived cell lines resistant to BRAF inhibitor vemurafenib. We observed that melanoma cell lines expressed a wide array of p53 and p73 isoforms, with Δ160p53α as the most variable one. We demonstrated for the first time that Δ160p53α, and to a lesser extent Δ160p53ß, can be recruited on chromatin, and that Δ160p53γ can localize in perinuclear foci; moreover, all Δ160p53 isoforms can stimulate proliferation and in vitro migration. Lastly, vemurafenib-resistant melanoma cells showed an altered expression of p53 and p73 isoforms, namely an increased expression of potentially pro-oncogenic Δ40p53ß and a decrease in tumor-suppressive TAp73ß. We therefore propose that p53 family isoforms can play a role in melanoma cells' aggressiveness.

12.
Cancers (Basel) ; 13(18)2021 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-34572789

RESUMO

BACKGROUND: Lung cancer is the most frequent cause of cancer-related deaths worldwide. The clinical development of immune checkpoint blockade has dramatically changed the treatment paradigm for patients with lung cancer. Yet, an improved understanding of PD-1/PD-L1 checkpoint blockade-responsive biology is warranted. METHODS: We aimed to identify the landscape of immune cell infiltration in primary lung adenocarcinoma (LUAD) in the context of tumoral PD-L1 expression and the extent of immune infiltration ("hot" vs. "cold" phenotype). The study comprises LUAD cases (n = 138) with "hot" (≥150 lymphocytes/HPF) and "cold" (<150 lymphocytes/HPF) tumor immune phenotype and positive (>50%) and negative (<1%) tumor PD-L1 expression, respectively. Tumor samples were immunohistochemically analyzed for expression of PD-L1, CD4, and CD8, and further investigated by transcriptome analysis. RESULTS: Gene set enrichment analysis defined complement, IL-JAK-STAT signaling, KRAS signaling, inflammatory response, TNF-alpha signaling, interferon-gamma response, interferon-alpha response, and allograft rejection as significantly upregulated pathways in the PD-L1-positive hot subgroup. Additionally, we demonstrated that STAT1 is upregulated in the PD-L1-positive hot subgroup and KIT in the PD-L1-negative hot subgroup. CONCLUSION: The presented study illustrates novel aspects of PD-L1 regulation, with potential biological relevance, as well as relevance for immunotherapy response stratification.

13.
Biochimie ; 90(9): 1347-55, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18445487

RESUMO

The SOS response is an important mechanism which allows Escherichia coli cells to maintain genome integrity. Two key proteins in SOS regulation are LexA (repressor) and RecA (coprotease). The signal for SOS induction is generated at the level of a RecA filament. Depending on the type of DNA damage, a RecA filament is produced by specific activities (helicase, nuclease and RecA loading) of either RecBCD, RecF or a hybrid recombination pathway. It was recently demonstrated that RecA loading activity is essential for the induction of the SOS response after UV-irradiation. In this paper we studied the genetic requirements for SOS induction after introduction of a double-strand break (DSB) by the I-SceI endonuclease in a RecA loading deficient recB mutant (recB1080). We monitored SOS induction by assaying beta-galactosidase activity and compared induction of the response between strains having one or more inactivated mechanisms of RecA loading and their derivatives. We found that simultaneous inactivation of both RecA loading functions (in recB1080 recO double mutant) partially impairs SOS induction after introduction of a DSB. However, we found that the RecJ nuclease is essential for SOS induction after the introduction of a DSB in the recB1080 mutant. This result indicates that RecJ is needed to prepare ssDNA for subsequent loading of RecA protein. It implies that an additional type of RecA loading could exist in the cell.


Assuntos
Quebras de DNA de Cadeia Dupla , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , Escherichia coli/genética , Exodesoxirribonuclease V/genética , Exodesoxirribonucleases/metabolismo , Recombinases Rec A/metabolismo , Resposta SOS em Genética/genética , Arabinose/farmacologia , Escherichia coli/efeitos dos fármacos , Exodesoxirribonuclease V/metabolismo , Exodesoxirribonucleases/genética , Viabilidade Microbiana/efeitos dos fármacos , Mutação/genética , Recombinases Rec A/genética
14.
Cancer Res ; 78(15): 4270-4281, 2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29776963

RESUMO

Small cell lung cancer (SCLC) represents the most aggressive pulmonary neoplasm and is often diagnosed at late stage with limited survival, despite combined chemotherapies. We show in an autochthonous mouse model of SCLC that combined anti-VEGF/anti-PD-L1-targeted therapy synergistically improves treatment outcome compared with anti-PD-L1 and anti-VEGF monotherapy. Mice treated with anti-PD-L1 alone relapsed after 3 weeks and were associated with a tumor-associated PD-1/TIM-3 double-positive exhausted T-cell phenotype. This exhausted T-cell phenotype upon PD-L1 blockade was abrogated by the addition of anti-VEGF-targeted treatment. We confirmed a similar TIM-3-positive T-cell phenotype in peripheral blood mononuclear cells of patients with SCLC with adaptive resistance to anti-PD-1 treatment. Mechanistically, we show that VEGFA enhances coexpression of the inhibitory receptor TIM-3 on T cells, indicating an immunosuppressive function of VEGF in patients with SCLC during anti-PD-1-targeted treatment. Our data strongly suggest that a combination of anti-VEGF and anti-PD-L1 therapies can be an effective treatment strategy in patients with SCLC.Significance: Combining VEGF and PD-L1 blockade could be of therapeutic benefit to patients with small cell lung cancer. Cancer Res; 78(15); 4270-81. ©2018 AACR.


Assuntos
Antineoplásicos/farmacologia , Antígeno B7-H1/antagonistas & inibidores , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Carcinoma de Pequenas Células do Pulmão/tratamento farmacológico , Carcinoma de Pequenas Células do Pulmão/metabolismo , Fator A de Crescimento do Endotélio Vascular/antagonistas & inibidores , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Feminino , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos do Interstício Tumoral/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo
15.
Genetics ; 174(4): 2137-49, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-17028321

RESUMO

It has been widely considered that DNA modification protects the chromosome of bacteria E. coli K-12 against their own restriction-modification systems. Chromosomal DNA is protected from degradation by methylation of target sequences. However, when unmethylated target sequences are generated in the host chromosome, the endonuclease activity of the EcoKI restriction-modification enzyme is inactivated by the ClpXP protease and DNA is protected. This process is known as restriction alleviation (RA) and it can be induced by UV irradiation (UV-induced RA). It has been proposed that chromosomal unmethylated target sequences, a signal for the cell to protect its own DNA, can be generated by homologous recombination during the repair of damaged DNA. In this study, we wanted to further investigate the genetic requirements for recombination proteins involved in the generation of unmethylated target sequences. For this purpose, we monitored the alleviation of EcoKI restriction by measuring the survival of unmodified lambda in UV-irradiated cells. Our genetic analysis showed that UV-induced RA is dependent on the excision repair protein UvrA, the RecA-loading activity of the RecBCD enzyme, and the primosome assembly activity of the PriA helicase and is partially dependent on RecFOR proteins. On the basis of our results, we propose that unmethylated target sequences are generated at the D-loop by the strand exchange of two hemi-methylated duplex DNAs and subsequent initiation of DNA replication.


Assuntos
Quebras de DNA de Cadeia Dupla , DNA Helicases/metabolismo , Reparo do DNA , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Tolerância a Radiação , Raios Ultravioleta , Cromossomos Bacterianos , DNA Helicases/genética , Replicação do DNA/efeitos da radiação , Enzimas de Restrição do DNA/genética , Enzimas de Restrição do DNA/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Proteínas de Escherichia coli/genética , Exodesoxirribonuclease V/genética , Exodesoxirribonuclease V/metabolismo , Recombinases Rec A/genética , Recombinases Rec A/metabolismo , Recombinação Genética
16.
Oncotarget ; 8(5): 7964-7976, 2017 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-27974704

RESUMO

Androgen deprivation therapy (ADT) is the main therapeutic option for advanced prostate cancer (PCa). After initial regression, most tumors develop into castration-resistant PCa (CRPC). Previously, we found the Mediator complex subunit MED15 to be overexpressed in CRPC and to correlate with clinical outcome. Therefore, we investigated whether MED15 is implicated in the signaling changes taking place during progression to CRPC. Immunohistochemistry (IHC) for MED15 on matched samples from the same patients before and after ADT reveals significantly increased MED15 expression after ADT in 72%. A validation cohort comprising samples before and after therapy confirmed our observations. Protein analysis for pAKT and pSMAD3 shows that MED15 correlates with PI3K and TGFß activities, respectively, and that hyper-activation of both pathways simultaneously correlates with highest levels of MED15. We further show that MED15 protein expression increases in LNCaP cells under androgen deprivation, and via EGF mediated PI3K activation. PI3K/mTOR and TGFß-receptor inhibition results in decreased MED15 expression. MED15 knockdown reduces LNCaP cell viability and induces apoptosis during androgen deprivation, while cell cycle is not affected. Collectively, MED15 overexpression arises during ADT via hyper-activation of PI3K/mTOR signaling, thus MED15 may serve as a predictive marker for response to PI3K/mTOR inhibitors. Furthermore, MED15 is potentially a therapeutic target for the treatment of CRPC.


Assuntos
Antagonistas de Androgênios/farmacologia , Antineoplásicos Hormonais/farmacologia , Complexo Mediador/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Neoplasias da Próstata/tratamento farmacológico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Complexo Mediador/genética , Fosforilação , Neoplasias da Próstata/enzimologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Interferência de RNA , Receptores Androgênicos/efeitos dos fármacos , Receptores Androgênicos/metabolismo , Receptores de Fatores de Crescimento Transformadores beta/metabolismo , Proteína Smad3/metabolismo , Transfecção , Fator de Crescimento Transformador beta/metabolismo , Regulação para Cima
17.
Clin Cancer Res ; 23(7): 1829-1840, 2017 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-27678455

RESUMO

Purpose: The Mediator complex is a multiprotein assembly, which serves as a hub for diverse signaling pathways to regulate gene expression. Because gene expression is frequently altered in cancer, a systematic understanding of the Mediator complex in malignancies could foster the development of novel targeted therapeutic approaches.Experimental Design: We performed a systematic deconvolution of the Mediator subunit expression profiles across 23 cancer entities (n = 8,568) using data from The Cancer Genome Atlas (TCGA). Prostate cancer-specific findings were validated in two publicly available gene expression cohorts and a large cohort of primary and advanced prostate cancer (n = 622) stained by immunohistochemistry. The role of CDK19 and CDK8 was evaluated by siRNA-mediated gene knockdown and inhibitor treatment in prostate cancer cell lines with functional assays and gene expression analysis by RNAseq.Results: Cluster analysis of TCGA expression data segregated tumor entities, indicating tumor-type-specific Mediator complex compositions. Only prostate cancer was marked by high expression of CDK19 In primary prostate cancer, CDK19 was associated with increased aggressiveness and shorter disease-free survival. During cancer progression, highest levels of CDK19 and of its paralog CDK8 were present in metastases. In vitro, inhibition of CDK19 and CDK8 by knockdown or treatment with a selective CDK8/CDK19 inhibitor significantly decreased migration and invasion.Conclusions: Our analysis revealed distinct transcriptional expression profiles of the Mediator complex across cancer entities indicating differential modes of transcriptional regulation. Moreover, it identified CDK19 and CDK8 to be specifically overexpressed during prostate cancer progression, highlighting their potential as novel therapeutic targets in advanced prostate cancer. Clin Cancer Res; 23(7); 1829-40. ©2016 AACR.


Assuntos
Quinase 8 Dependente de Ciclina/genética , Quinases Ciclina-Dependentes/genética , Complexo Mediador/genética , Neoplasias da Próstata/genética , Linhagem Celular Tumoral , Intervalo Livre de Doença , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Masculino , Estadiamento de Neoplasias , Neoplasias da Próstata/patologia , Transcriptoma/genética
18.
Res Microbiol ; 167(6): 462-71, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27130282

RESUMO

In bacteria, the RecA protein forms recombinogenic filaments required for the SOS response and DNA recombination. In order to form a recombinogenic filament, wild type RecA needs to bind ATP and to interact with mediator proteins. The RecA730 protein is a mutant version of RecA with superior catalytic abilities, allowing filament formation without the help of mediator proteins. The mechanism of RecA730 filament formation is not well understood, and the question remains as to whether the RecA730 protein requires ATP binding in order to become competent for filament formation. We examined two mutants, recA730,4159 (presumed to be defective for ATP binding) and recA730,2201 (defective for ATP hydrolysis), and show that they have different properties with respect to SOS induction, conjugational recombination and double-strand break repair. We show that ATP binding is essential for all RecA730 functions, while ATP hydrolysis is required only for double-strand break repair. Our results emphasize the similarity of the SOS response and conjugational recombination, neither of which requires ATP hydrolysis by RecA730.


Assuntos
Escherichia coli/enzimologia , Escherichia coli/fisiologia , Proteínas Mutantes/metabolismo , Recombinases Rec A/metabolismo , Recombinação Genética , Resposta SOS em Genética , Trifosfato de Adenosina/metabolismo , Reparo do DNA , Escherichia coli/genética , Proteínas Mutantes/genética , Ligação Proteica , Multimerização Proteica , Recombinases Rec A/genética
19.
Mol Cancer Res ; 14(11): 1110-1123, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27514406

RESUMO

KRAS-mutant lung adenocarcinoma is among the most common cancer entities and, in advanced stages, typically displays poor prognosis due to acquired resistance against chemotherapy, which is still largely based on cisplatin-containing combination regimens. Mechanisms of cisplatin resistance have been extensively investigated, and ERCC1 has emerged as a key player due to its central role in the repair of cisplatin-induced DNA lesions. However, clinical data have not unequivocally confirmed ERCC1 status as a predictor of the response to cisplatin treatment. Therefore, we employed an autochthonous mouse model of Kras-driven lung adenocarcinoma resembling human lung adenocarcinoma to investigate the role of Ercc1 in the response to cisplatin treatment. Our data show that Ercc1 deficiency in Tp53-deficient murine lung adenocarcinoma induces a more aggressive tumor phenotype that displays enhanced sensitivity to cisplatin treatment. Furthermore, tumors that relapsed after cisplatin treatment in our model develop a robust etoposide sensitivity that is independent of the Ercc1 status and depends solely on previous cisplatin exposure. Our results provide a solid rationale for further investigation of the possibility of preselection of lung adenocarcinoma patients according to the functional ERCC1- and mutational TP53 status, where functionally ERCC1-incompetent patients might benefit from sequential cisplatin and etoposide chemotherapy. IMPLICATIONS: This study provides a solid rationale for the stratification of lung adenocarcinoma patients according to the functional ERCC1- and mutational TP53 status, where functionally ERCC1-incompetent patients could benefit from sequential cisplatin and etoposide chemotherapy. Mol Cancer Res; 14(11); 1110-23. ©2016 AACR.


Assuntos
Adenocarcinoma/tratamento farmacológico , Cisplatino/administração & dosagem , Proteínas de Ligação a DNA/deficiência , Endonucleases/deficiência , Neoplasias Pulmonares/tratamento farmacológico , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteína Supressora de Tumor p53/genética , Adenocarcinoma/genética , Adenocarcinoma de Pulmão , Animais , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos , Etoposídeo/administração & dosagem , Etoposídeo/farmacologia , Humanos , Neoplasias Pulmonares/genética , Camundongos , Mutação , Medicina de Precisão , Células Tumorais Cultivadas
20.
Biochimie ; 94(9): 1918-25, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22617484

RESUMO

Homologous recombination is a crucial process for the maintenance of genome integrity. The two main recombination pathways in Escherichia coli (RecBCD and RecF) differ in the initiation of recombination. The RecBCD enzyme is the only component of the RecBCD pathway which acts in the initiation of recombination, and possesses all biochemical activities (helicase, 5'-3' exonuclease, χ cutting and loading of the RecA protein onto single-stranded (ss) DNA) needed for the processing of double stranded (ds) DNA breaks (DSB). When the nuclease and RecA loading activities of the RecBCD enzyme are inactivated, the proteins of the RecF recombination machinery, i.e., RecJ and RecFOR substitute for the missing 5'-3' exonuclease and RecA loading activity respectively. The above mentioned activities of the RecBCD enzyme are regulated by an octameric sequence known as the χ site (5'-GCTGGTGG-3'). One class of recC mutations, designated recC*, leads to reduced χ cutting in vitro. The recC1004 strain (a member of the recC* mutant class) is recombination proficient and resistant to UV radiation. In this paper, we studied the effects of mutations in RecF pathway genes on DNA repair (after UV and γ radiation) and on conjugational recombination in recC1004 and recC1004 recD backgrounds. We found that DNA repair after UV and γ radiation in the recC1004 and recC1004 recD backgrounds depends on recFOR and recJ gene products. We also showed that the recC1004 mutant has reduced survival after γ radiation. This phenotype is suppressed by the recD mutation which abolishes the RecBCD dependent nuclease activity. Finally, the genetic requirements for conjugational recombination differ from those for DNA repair. Conjugational recombination in recC1004 recD mutants is dependent on the recJ gene product. Our results emphasize the importance of the canonical χ recognition activity in DSB repair and the significance of interchange between the components of two recombination machineries in achieving efficient DNA repair.


Assuntos
Reparo do DNA/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Exodesoxirribonuclease V/genética , Exodesoxirribonuclease V/metabolismo , Mutação , Recombinação Genética/genética , Quebras de DNA de Cadeia Dupla/efeitos da radiação , DNA Helicases/metabolismo , Reparo do DNA/efeitos da radiação , Desoxirribonucleases/metabolismo , Escherichia coli/enzimologia , Recombinação Genética/efeitos da radiação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA