RESUMO
Novel poly(arylene ethynylene)s comprising a cinnoline core were prepared in high yields via a three-step methodology. A Richter-type cyclization of 2-ethynyl- and 2-(buta-1,3-diynyl)aryltriazenes was used for cinnoline ring formation, followed by a Sonogashira coupling for the introduction of trimethylsilylethynyl moieties and a sila-Sonogashira coupling as the polycondensation technique. The fluorescence of the cinnoline-containing polymers in THF was highly sensitive to quenching by Pd(2+) ions.
RESUMO
Recent trends in research and development of electrolyte-insulator-semiconductor (EIS) field-effect chemical sensors (ion-selective field-effect transistors, light-addressable potentiometric sensors, capacitive EIS-sensors) with inorganic gate insulators (oxide, nitride and chalcogenide films) are reviewed. Physical properties of EIS systems and basic mechanisms of their chemical sensitivity are examined. Analytical characteristics and sensing mechanisms of EIS pH sensors with oxide and nitride films, as well as metal ions sensors with chalcogenide films, are critically discussed. Prospects of future research on EIS field-effect biosensors are briefly outlined.