RESUMO
Redox regulations and antioxidant defence play a central role in the acclimation of plants to their environment. Glutathione represents an essential component of the cellular antioxidant defence system, which keeps levels of reactive oxygen species (ROS) under control. High-performance liquid chromatography (HPLC) separation with fluorescence detection is a sensitive method that enables analysis of reduced and oxidised glutathione levels in small samples of plant tissues or plant cell culture. We aimed to optimise the method to obtain more accurate information about the total level of glutathione and the proportion of the reduced form (GSH) by choosing the most suitable reduction reagent and the conditions under which the reduction occurs. The applicability of the developed method was verified by analysing tobacco cells treated with hydrogen peroxide, which caused a decrease in the GSH/total glutathione ratio. Significant changes in the level of glutathione as well as in the GSH/total glutathione ratio were also observed during tobacco cell culture development.
Assuntos
Glutationa , Peróxido de Hidrogênio , Nicotiana , Estresse Oxidativo , Glutationa/metabolismo , Glutationa/análise , Cromatografia Líquida de Alta Pressão/métodos , Nicotiana/metabolismo , Peróxido de Hidrogênio/metabolismo , Peróxido de Hidrogênio/farmacologia , Células Vegetais/metabolismo , Células Cultivadas , Técnicas de Cultura de Células/métodos , OxirreduçãoRESUMO
BACKGROUND: Sulfur and diverse sulfur-containing compounds constitute important components of plant defences against a wide array of microbial pathogens. Among them, hydrogen sulfide (H2S) occupies a prominent position as a gaseous signalling molecule that plays multiple roles in regulation of plant growth, development and plant responses to stress conditions. Although the production of H2S in plant cells has been discovered several decades ago, the underlying pathways of H2S biosynthesis, metabolism and signalling were only recently uncovered. AIM OF THE REVIEW: Here we review the current knowledge on the biosynthesis of H2S in plant cells, with special attention to L-cysteine desulfhydrase (DES) as the key enzyme controlling H2S levels biosynthesis in the cytosol of plant cells during plant growth, development and diverse abiotic and biotic stress conditions. KEY SCIENTIFIC CONCEPTS OF REVIEW: Recent advances have revealed molecular mechanisms of DES properties, functions and regulation involved in modulations of H2S production during plant responses to abiotic and biotic stress stimuli. Studies on des mutants of the model plant Arabidopsis thaliana uncovered molecular mechanisms of H2S action as a signalling and defence molecule in plant-pathogen interactions. Signalling pathways of H2S include S-persulfidation of protein cysteines, a redox-based post-translational modification leading to activation of downstream components of H2S signalling. Accumulated evidence shows DES and H2S implementation into salicylic acid signalling and activation of pathogenesis-related proteins and autophagy within plant immunity. Obtained knowledge on molecular mechanisms of H2S action in plant defence responses opens new prospects in the search for crop varieties with increased resistance to bacterial and fungal pathogens.