Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 24(24)2019 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-31842481

RESUMO

Prenyltransferases (PTs) are enzymes that catalyze prenyl chain elongation. Some are highly similar to each other at the amino acid level. Therefore, it is difficult to assign their function based solely on their sequence homology to functional orthologs. Other experiments, such as in vitro enzymatic assay, mutant analysis, and mutant complementation are necessary to assign their precise function. Moreover, subcellular localization can also influence the functionality of the enzymes within the pathway network, because different isoprenoid end products are synthesized in the cytosol, mitochondria, or plastids from prenyl diphosphate (prenyl-PP) substrates. In addition to in vivo functional experiments, in silico approaches, such as co-expression analysis, can provide information about the topology of PTs within the isoprenoid pathway network. There has been huge progress in the last few years in the characterization of individual Arabidopsis PTs, resulting in better understanding of their function and their topology within the isoprenoid pathway. Here, we summarize these findings and present the updated topological model of PTs in the Arabidopsis thaliana isoprenoid pathway.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Dimetilaliltranstransferase , Redes Reguladoras de Genes , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Dimetilaliltranstransferase/genética , Dimetilaliltranstransferase/metabolismo , Terpenos/metabolismo
2.
Plant J ; 84(5): 847-59, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26505977

RESUMO

Isoprenyl diphosphate synthases (IDSs) catalyze some of the most basic steps in terpene biosynthesis by producing the prenyl diphosphate precursors of each of the various terpenoid classes. Most plants investigated have distinct enzymes that produce the short-chain all-trans (E) prenyl diphosphates geranyl diphosphate (GDP, C10 ), farnesyl diphosphate (FDP, C15 ) or geranylgeranyl diphosphate (GGDP, C20 ). In the genome of Arabidopsis thaliana, 15 trans-product-forming IDSs are present. Ten of these have recently been shown to produce GGDP by genetic complementation of a carotenoid pathway engineered into Escherichia coli. When verifying the product pattern of IDSs producing GGDP by a new LC-MS/MS procedure, we found that five of these IDSs produce geranylfarnesyl diphosphate (GFDP, C25 ) instead of GGDP as their major product in enzyme assays performed in vitro. Over-expression of one of the GFDP synthases in A. thaliana confirmed the production of GFDP in vivo. Enzyme assays with A. thaliana protein extracts from roots but not other organs showed formation of GFDP. Furthermore, GFDP itself was detected in root extracts. Subcellular localization studies in leaves indicated that four of the GFDP synthases were targeted to the plastoglobules of the chloroplast and one was targeted to the mitochondria. Sequence comparison and mutational studies showed that the size of the R group of the 5th amino acid residue N-terminal to the first aspartate-rich motif is responsible for C25 versus C20 product formation, with smaller R groups (Ala and Ser) resulting in GGDP (C20 ) as a product and a larger R group (Met) resulting in GFDP (C25 ).


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/metabolismo , Farnesiltranstransferase/fisiologia , Geraniltranstransferase/fisiologia , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/análise , Proteínas de Arabidopsis/química , Escherichia coli/genética , Farnesiltranstransferase/análise , Farnesiltranstransferase/química , Geraniltranstransferase/análise , Geraniltranstransferase/química , Redes e Vias Metabólicas , Mitocôndrias/metabolismo , Dados de Sequência Molecular , Plastídeos/metabolismo , Alinhamento de Sequência , Análise de Sequência de Proteína
3.
New Phytol ; 209(1): 252-64, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26224411

RESUMO

Most plastid isoprenoids, including photosynthesis-related metabolites such as carotenoids and the side chain of chlorophylls, tocopherols (vitamin E), phylloquinones (vitamin K), and plastoquinones, derive from geranylgeranyl diphosphate (GGPP) synthesized by GGPP synthase (GGPPS) enzymes. Seven out of 10 functional GGPPS isozymes in Arabidopsis thaliana reside in plastids. We aimed to address the function of different GGPPS paralogues for plastid isoprenoid biosynthesis. We constructed a gene co-expression network (GCN) using GGPPS paralogues as guide genes and genes from the upstream and downstream pathways as query genes. Furthermore, knock-out and/or knock-down ggpps mutants were generated and their growth and metabolic phenotypes were analyzed. Also, interacting protein partners of GGPPS11 were searched for. Our data showed that GGPPS11, encoding the only plastid isozyme essential for plant development, functions as a hub gene among GGPPS paralogues and is required for the production of all major groups of plastid isoprenoids. Furthermore, we showed that the GGPPS11 protein physically interacts with enzymes that use GGPP for the production of carotenoids, chlorophylls, tocopherols, phylloquinone, and plastoquinone. GGPPS11 is a hub isozyme required for the production of most photosynthesis-related isoprenoids. Both gene co-expression and protein-protein interaction likely contribute to the channeling of GGPP by GGPPS11.


Assuntos
Alquil e Aril Transferases/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Terpenos/metabolismo , Alquil e Aril Transferases/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Carotenoides/metabolismo , Clorofila/metabolismo , Isoenzimas , Fenótipo , Fotossíntese , Plastídeos/enzimologia , Fosfatos de Poli-Isoprenil/metabolismo , Mapeamento de Interação de Proteínas
4.
Plant Mol Biol ; 82(4-5): 393-416, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23729351

RESUMO

Geranylgeranyl diphosphate (GGPP) is a key precursor of various isoprenoids that have diverse functions in plant metabolism and development. The annotation of the Arabidopsis thaliana genome predicts 12 genes to encode geranylgeranyl diphosphate synthases (GGPPS). In this study we analyzed GGPPS activity as well as the subcellular localization and tissue-specific expression of the entire protein family in A. thaliana. GGPPS2 (At2g18620), GGPPS3 (At2g18640), GGPPS6 (At3g14530), GGPPS7 (At3g14550), GGPPS8 (At3g20160), GGPPS9 (At3g29430), GGPPS10 (At3g32040) and GGPPS11 (At4g36810) showed GGPPS activity in Escherichia coli, similar to activities reported earlier for GGPPS1 (At1g49530) and GGPPS4 (At2g23800) (Zhu et al. in Plant Cell Physiol 38(3):357-361, 1997a; Plant Mol Biol 35(3):331-341, b). GGPPS12 (At4g38460) did not produce GGPP in E. coli. Based on DNA sequence analysis we propose that GGPPS5 (At3g14510) is a pseudogene. GGPPS-GFP (green fluorescent protein) fusion proteins of the ten functional GGPP synthases localized to plastids, mitochondria and the endoplasmic reticulum, with the majority of the enzymes located in plastids. Gene expression analysis using quantitative real time-PCR, GGPPS promoter-GUS (ß-glucuronidase) assays and publicly available microarray data revealed a differential spatio-temporal expression of GGPPS genes. The results suggest that plastids and mitochondria are key subcellular compartments for the synthesis of ubiquitous GGPP-derived isoprenoid species. GGPPS11 and GGPPS1 are the major isozymes responsible for their biosynthesis. All remaining paralogs, encoding six plastidial isozymes and two cytosolic isozymes, were expressed in specific tissues and/or at specific developmental stages, suggesting their role in developmentally regulated isoprenoid biosynthesis. Our results show that of the 12 predicted GGPPS encoded in the A. thaliana genome 10 are functional proteins that can synthesize GGPP. Their specific subcellular location and differential expression pattern suggest subfunctionalization in providing GGPP to specific tissues, developmental stages, or metabolic pathways.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Farnesiltranstransferase/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Farnesiltranstransferase/química , Farnesiltranstransferase/genética , Regulação da Expressão Gênica de Plantas/genética , Regulação da Expressão Gênica de Plantas/fisiologia , Reação em Cadeia da Polimerase
5.
Plant J ; 63(3): 512-25, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-20497375

RESUMO

Farnesyl diphosphate (FPP) synthase (FPS) catalyses the synthesis of FPP, the major substrate used by cytosolic and mitochondrial branches of the isoprenoid pathway. Arabidopsis contains two farnesyl diphosphate synthase genes, FPS1 and FPS2, that encode isozymes FPS1L (mitochondrial), FPS1S and FPS2 (both cytosolic). Here we show that simultaneous knockout of both FPS genes is lethal for Arabidopsis, and embryo development is arrested at the pre-globular stage, demonstrating that FPP-derived isoprenoid metabolism is essential. In addition, lack of FPS enzyme activity severely impairs male genetic transmission. In contrast, no major developmental and metabolic defects were observed in fps1 and fps2 single knockout mutants, demonstrating the redundancy of the genes. The levels of sterols and ubiquinone, the major mitochondrial isoprenoid, are only slightly reduced in the single mutants. Although one functional FPS gene is sufficient to support isoprenoid biosynthesis for normal growth and development, the functions of FPS1 and FPS2 during development are not completely redundant. FPS1 activity has a predominant role during most of the plant life cycle, and FPS2 appears to have a major role in seeds and during the early stages of seedling development. Lack of FPS2 activity in seeds, but not of FPS1 activity, is associated with a marked reduction in sitosterol content and positive feedback regulation of 3-hydroxy-3-methylglutaryl CoA reductase activity that renders seeds hypersensitive to the 3-hydroxy-3-methylglutaryl CoA reductase inhibitor mevastatin.


Assuntos
Arabidopsis/enzimologia , Geraniltranstransferase/metabolismo , Isoenzimas/metabolismo , Terpenos/metabolismo , Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Brassinosteroides/metabolismo , Genes de Plantas , Geraniltranstransferase/genética , Isoenzimas/genética , Prenilação de Proteína
6.
Front Plant Sci ; 10: 1034, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31507624

RESUMO

Chloroplasts are essential for autonomous plant growth, and their biogenesis is a complex process requiring both plastid and nuclear genome. One of the essential factors required for chloroplast biogenesis are carotenoids. Carotenoids are synthesized in plastids, and it was shown that plastid localized methylerythritol 4-phosphate (MEP) pathway provides substrates for their biosynthesis. Here, we propose a model, using results of our own mutant analysis combined with the results of others, that a MEP-independent pathway, likely a mevalonate (MVA)-dependent pathway, provides intermediates for chloroplast biogenesis in Arabidopsis embryos. The pattern of this chloroplast biogenesis differs from the MEP-dependent chloroplast biogenesis. In MEP-dependent chloroplast biogenesis, chloroplasts are formed rather uniformly in the whole embryo, with stronger chlorophyll accumulation in cotyledons. In a MEP-independent pathway, chloroplasts are formed predominantly in the hypocotyl and in the embryonic root. We also show that this pattern of chlorophyll accumulation is common to MEP pathway mutants as well as to the mutant lacking geranylgeranyl diphosphate synthase 11 (GGPPS11) activity in plastids but expressing it in the cytosol (GGPPS11cyt). It was recently described that shorter GGPPS11 transcripts are present in Arabidopsis, and they can be translated into active cytosolic proteins. We therefore propose that the MEP-independent pathway for chloroplast biogenesis in Arabidopsis embryos is an MVA pathway that provides substrates for the synthesis of GGPP via GGPPS11cyt and this is then transported to plastids, where it is used for carotenoid biosynthesis and subsequently for chloroplast biogenesis mainly in the hypocotyl and in the embryonic root.

8.
Front Plant Sci ; 5: 230, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24904625

RESUMO

Multiple geranylgeranyl diphosphate synthases (GGPPS) for biosynthesis of geranylgeranyl diphosphate (GGPP) exist in plants. GGPP is produced in the isoprenoid pathway and is a central precursor for various primary and specialized plant metabolites. Therefore, its biosynthesis is an essential regulatory point in the isoprenoid pathway. We selected 119 GGPPSs from 48 species representing all major plant lineages, based on stringent homology criteria. After the diversification of land plants, the number of GGPPS paralogs per species increases. Already in the moss Physcomitrella patens, GGPPS appears to be encoded by multiple paralogous genes. In gymnosperms, neofunctionalization of GGPPS may have enabled optimized biosynthesis of primary and specialized metabolites. Notably, lineage-specific expansion of GGPPS occurred in land plants. As a representative species we focused here on Arabidopsis thaliana, which retained the highest number of GGPPS paralogs (twelve) among the 48 species we considered in this study. Our results show that the A. thaliana GGPPS gene family is an example of evolution involving neo- and subfunctionalization as well as pseudogenization. We propose subfunctionalization as one of the main mechanisms allowing the maintenance of multiple GGPPS paralogs in A. thaliana genome. Accordingly, the changes in the expression patterns of the GGPPS paralogs occurring after gene duplication led to developmental and/or condition specific functional evolution.

9.
Annu Rev Plant Biol ; 64: 665-700, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23451776

RESUMO

Isoprenoid biosynthesis is essential for all living organisms, and isoprenoids are also of industrial and agricultural interest. All isoprenoids are derived from prenyl diphosphate (prenyl-PP) precursors. Unlike isoprenoid biosynthesis in other living organisms, prenyl-PP, as the precursor of all isoprenoids in plants, is synthesized by two independent pathways: the mevalonate (MVA) pathway in the cytoplasm and the 2-C-methyl-D-erythritol 4-phosphate (MEP) pathway in plastids. This review focuses on progress in our understanding of how the precursors for isoprenoid biosynthesis are synthesized in the two subcellular compartments, how the underlying pathway gene networks are organized and regulated, and how network perturbations impact each pathway and plant development. Because of the wealth of data on isoprenoid biosynthesis, we emphasize research in Arabidopsis thaliana and compare the synthesis of isoprenoid precursor molecules in this model plant with their synthesis in other prokaryotic and eukaryotic organisms.


Assuntos
Eritritol/análogos & derivados , Redes e Vias Metabólicas , Plantas/metabolismo , Fosfatos Açúcares/metabolismo , Terpenos/metabolismo , Eritritol/metabolismo , Redes Reguladoras de Genes , Ácido Mevalônico/metabolismo , Plastídeos/metabolismo
10.
Mol Plant ; 5(2): 318-33, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22442388

RESUMO

Isoprenoids are functionally and structurally the most diverse group of plant metabolites reported to date. They can function as primary metabolites, participating in essential plant cellular processes, and as secondary metabolites, of which many have substantial commercial, pharmacological, and agricultural value. Isoprenoid end products participate in plants in a wide range of physiological processes acting in them both synergistically, such as chlorophyll and carotenoids during photosynthesis, or antagonistically, such as gibberellic acid and abscisic acid during seed germination. It is therefore expected that fluxes via isoprenoid metabolic network are tightly controlled both temporally and spatially, and that this control occurs at different levels of regulation and in an orchestrated manner over the entire isoprenoid metabolic network. In this review, we summarize our current knowledge of the topology of the plant isoprenoid pathway network and its regulation at the gene expression level following diverse stimuli. We conclude by discussing agronomical and biotechnological applications emerging from the plant isoprenoid metabolism and provide an outlook on future directions in the systems analysis of the plant isoprenoid pathway network.


Assuntos
Redes e Vias Metabólicas , Terpenos/química , Terpenos/metabolismo , Biotecnologia , Genes de Plantas/genética , Redes e Vias Metabólicas/genética , Modelos Biológicos , Pesquisa
11.
J Exp Bot ; 53(372): 1227-36, 2002 May.
Artigo em Inglês | MEDLINE | ID: mdl-11997371

RESUMO

As an unfortunate consequence of aerobic life, active oxygen species (AOS) are formed by partial reduction of molecular oxygen. Plants possess a complex battery of enzymatic and non-enzymatic antioxidants that can protect cells from oxidative damage by scavenging AOS. It is becoming evident that AOS, which are generated during pathogen attack and abiotic stress situations, are recognized by plants as a signal for triggering defence responses. An overview of the literature is presented on the signalling role of AOS in plant defence responses, cell death, and development. Special attention is given to AOS and redox-regulated gene expression and the role of kinases and phosphatases in redox signal transduction.


Assuntos
Estresse Oxidativo/fisiologia , Oxigênio/metabolismo , Plantas/metabolismo , Transdução de Sinais/fisiologia , Aerobiose , Regulação da Expressão Gênica de Plantas , Oxirredução , Plantas/genética , Espécies Reativas de Oxigênio/metabolismo
12.
Proc Natl Acad Sci U S A ; 99(16): 10870-5, 2002 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-12122207

RESUMO

The molecular mechanisms by which plants acclimate to oxidative stress are poorly understood. To identify the processes involved in acclimation, we performed a comprehensive analysis of gene expression in Nicotiana tabacum leaves acclimated to oxidative stress. Combining mRNA differential display and cDNA array analysis, we estimated that at least 95 genes alter their expression in tobacco leaves acclimated to oxidative stress, of which 83% are induced and 17% repressed. Sequence analysis of 53 sequence tags revealed that, in addition to antioxidant genes, genes implicated in abiotic and biotic stress defenses, cellular protection and detoxification, energy and carbohydrate metabolism, de novo protein synthesis, and signal transduction showed altered expression. Expression of most of the genes was enhanced, except for genes associated with photosynthesis and light-regulated processes that were repressed. During acclimation, two distinct groups of coregulated genes ("early-" and "late-response" gene regulons) were observed, indicating the presence of at least two different gene induction pathways. These two gene regulons also showed differential expression patterns on an oxidative stress challenge. Expression of "late-response" genes was augmented in the acclimated leaf tissues, whereas expression of "early-response" genes was not. Together, our data suggest that acclimation to oxidative stress is a highly complex process associated with broad gene expression adjustments. Moreover, our data indicate that in addition to defense gene induction, sensitization of plants for potentiated gene expression might be an important factor in oxidative stress acclimation.


Assuntos
Expressão Gênica/efeitos dos fármacos , Nicotiana/efeitos dos fármacos , Estresse Oxidativo , Sequência de Bases , DNA de Plantas , Relação Dose-Resposta a Droga , Genes de Plantas , Genoma de Planta , Dados de Sequência Molecular , Família Multigênica , Oxidantes/farmacologia , Paraquat/farmacologia , Folhas de Planta , Regulon , Nicotiana/genética
13.
Genome Biol ; 5(11): R92, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15535868

RESUMO

We present a novel graphical Gaussian modeling approach for reverse engineering of genetic regulatory networks with many genes and few observations. When applying our approach to infer a gene network for isoprenoid biosynthesis in Arabidopsis thaliana, we detect modules of closely connected genes and candidate genes for possible cross-talk between the isoprenoid pathways. Genes of downstream pathways also fit well into the network. We evaluate our approach in a simulation study and using the yeast galactose network.


Assuntos
Arabidopsis/genética , Gráficos por Computador/estatística & dados numéricos , Genes de Plantas/genética , Modelos Genéticos , Terpenos/metabolismo , Simulação por Computador/estatística & dados numéricos , Galactose/metabolismo , Genes Fúngicos/genética , Genes de Plantas/fisiologia , Distribuição Normal , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA