Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 298(8): 102153, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35718062

RESUMO

The generation of bispecific antibodies (bsAbs) targeting two different antigens opens a new level of specificity and, compared to mAbs, improved clinical efficacy in cancer therapy. Currently, the different strategies for development of bsAbs primarily focus on IgG isotypes. Nevertheless, in comparison to IgG isotypes, IgE has been shown to offer superior tumor control in preclinical models. Therefore, in order to combine the promising potential of IgE molecules with increased target selectivity of bsAbs, we developed dual tumor-associated antigen-targeting bispecific human IgE antibodies. As proof of principle, we used two different pairing approaches - knobs-into-holes and leucine zipper-mediated pairing. Our data show that both strategies were highly efficient in driving bispecific IgE formation, with no undesired pairings observed. Bispecific IgE antibodies also showed a dose-dependent binding to their target antigens, and cell bridging experiments demonstrated simultaneous binding of two different antigens. As antibodies mediate a major part of their effector functions through interaction with Fc receptors (FcRs) expressed on immune cells, we confirmed FcεR binding by inducing in vitro mast cell degranulation and demonstrating in vitro and in vivo monocyte-mediated cytotoxicity against target antigen-expressing Chinese hamster ovary cells. Moreover, we demonstrated that the IgE bsAb construct was significantly more efficient in mediating antibody-dependent cell toxicity than its IgG1 counterpart. In conclusion, we describe the successful development of first bispecific IgE antibodies with superior antibody-dependent cell toxicity-mediated cell killing in comparison to IgG bispecific antibodies. These findings highlight the relevance of IgE-based bispecific antibodies for clinical application.


Assuntos
Anticorpos Biespecíficos , Antineoplásicos Imunológicos , Imunoglobulina E , Monócitos , Animais , Anticorpos Biespecíficos/farmacologia , Antineoplásicos Imunológicos/farmacologia , Células CHO , Cricetinae , Cricetulus , Humanos , Imunoglobulina E/farmacologia , Monócitos/citologia
2.
Cancer Res Commun ; 3(1): 109-118, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36968226

RESUMO

In the last decades, antibody-based tumor therapy has fundamentally improved the efficacy of treatment for patients with cancer. Currently, almost all tumor antigen-targeting antibodies approved for clinical application are of IgG1 Fc isotype. Similarly, the mouse homolog mIgG2a is the most commonly used in tumor mouse models. However, in mice, the efficacy of antibody-based tumor therapy is largely restricted to a prophylactic application. Direct isotype comparison studies in mice in a therapeutic setting are scarce. In this study, we assessed the efficacy of mouse tumor-targeting antibodies of different isotypes in a therapeutic setting using a highly systematic approach. To this end, we engineered and expressed antibodies of the same specificity but different isotypes, targeting the artificial tumor antigen CD90.1/Thy1.1 expressed by B16 melanoma cells. Our experiments revealed that in a therapeutic setting mIgG2a was superior to both mIgE and mIgG1 in controlling tumor growth. Furthermore, the observed mIgG2a antitumor effect was entirely Fc mediated as the protection was lost when an Fc-silenced mIgG2a isotype (LALA-PG mutations) was used. These data confirm mIgG2a superiority in a therapeutic tumor model. Significance: Direct comparisons of different antibody isotypes of the same specificity in cancer settings are still scarce. Here, it is shown that mIgG2a has a greater effect compared with mIgG1 and mIgE in controlling tumor growth in a therapeutic setting.


Assuntos
Imunoglobulina G , Neoplasias , Animais , Camundongos , Receptores Fc , Neoplasias/terapia , Antígenos de Neoplasias
3.
J Immunol Methods ; 489: 112914, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33197470

RESUMO

In addition to their known implication in allergy studies, IgE antibodies are becoming an increasingly interesting antibody class in cancer research. However, large-scale purification of IgE antibodies still poses substantial challenges, as they cannot be purified using techniques commonly used for other immunoglobulins such as protein A or protein G chromatography. Here, we have developed and optimised a gentle and simple IgE purification method based on thiophilic interaction chromatography (TIC). IgE binds to the thiophilic resin in presence of 1.2 M ammonium sulfate and is eluted in low salt concentration. Monomericity of purified antibodies ranged between 54 and 73%. Preparative size-exclusion chromatography was thereafter performed to further improve the purity, which reached >95% in the final product. The overall recovery was around 30%. The purification method was tested on both hybridoma-produced and recombinantly produced IgE antibodies with reproducible results. In addition, the antigen binding activity of purified IgE antibodies was preserved, as shown by binding ELISA. Purification by TIC is cheap, gentle in terms of pH to preserve IgE folding and function, and universal as any IgE antibody can be purified irrespective of the species of origin or affinity. Potentially, it could be used for purification of other antibody isotypes as well, when gentle conditions are required.


Assuntos
Hibridomas/química , Imunoglobulina E/isolamento & purificação , Animais , Cromatografia de Afinidade , Ensaio de Imunoadsorção Enzimática , Hibridomas/imunologia , Imunoglobulina E/química , Imunoglobulina E/imunologia , Camundongos , Células Tumorais Cultivadas
4.
J Immunol Methods ; 499: 113173, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34699840

RESUMO

Tumor necrosis factor receptor 2 (TNFR2) has gained much research interest in recent years because of its potential pivotal role in autoimmune disease and cancer. However, its function in regulating different immune cells is not well understood. There is a need for well-characterized reagents to selectively modulate TNFR2 function, thereby enabling definition of TNFR2-dependent biology in human and mouse surrogate models. Here, we describe the generation, production, purification, and characterization of a panel of novel antibodies targeting mouse TNFR2. The antibodies display functional differences in binding affinity and potency to block TNFα. Furthermore, epitope binding showed that the anti-mTNFR2 antibodies target different domains on the TNFR2 protein, associated with varying capacity to enhance CD8+ T-cell activation and costimulation. Moreover, the anti-TNFR2 antibodies demonstrate binding to isolated splenic mouse Tregs ex vivo and activated CD8+ cells, reinforcing their potential use to establish TNFR2-dependent immune modulation in translational models of autoimmunity and cancer.


Assuntos
Anticorpos/imunologia , Receptores Tipo II do Fator de Necrose Tumoral/imunologia , Animais , Células CHO , Cricetulus , Feminino , Camundongos , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA