Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 128(20): 203902, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35657860

RESUMO

The utility of all parametric nonlinear optical processes is hampered by phase-matching requirements. Quasi-phase-matching, birefringent phase matching, and higher-order-mode phase matching have all been developed to address this constraint, but the methods demonstrated to date suffer from the inconvenience of only being phase matched for a single, specific arrangement of beams, typically copropagating, resulting in cumbersome experimental configurations and large footprints for integrated devices. Here, we experimentally demonstrate that these phase-matching requirements may be satisfied in a parametric nonlinear optical process for multiple, if not all, configurations of input and output beams when using low-index media. Our measurement constitutes the first experimental observation of direction-independent phase matching for a medium sufficiently long for phase matching to be relevant. We demonstrate four-wave mixing from spectrally distinct co- and counterpropagating pump and probe beams, the backward generation of a nonlinear signal, and excitation by an out-of-plane probe beam. These results explicitly show that the unique properties of low-index media relax traditional phase-matching constraints, which can be exploited to facilitate nonlinear interactions and miniaturize nonlinear devices, thus adding to the established exceptional properties of low-index materials.

2.
Nano Lett ; 21(2): 914-920, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33400545

RESUMO

Materials with a zero refractive index support electromagnetic modes that exhibit stationary phase profiles. While such materials have been realized across the visible and near-infrared spectral range, radiative and dissipative optical losses have hindered their development. We reduce losses in zero-index, on-chip photonic crystals by introducing high-Q resonances via resonance-trapped and symmetry-protected states. Using these approaches, we experimentally obtain quality factors of 2.6 × 103 and 7.8 × 103 at near-infrared wavelengths, corresponding to an order-of-magnitude reduction in propagation loss over previous designs. Our work presents a viable approach to fabricate zero-index on-chip nanophotonic devices with low-loss.

3.
Rep Prog Phys ; 82(1): 012001, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30015328

RESUMO

Metamaterials with a refractive index of zero exhibit properties that are important for integrated optics. Possessing an infinite effective wavelength and zero spatial phase change, zero-index metamaterials may be especially useful for routing on-chip photonic processes and reducing the footprint of nonlinear interactions. Zero-index has only been achieved recently in an integrated platform through a Dirac-cone dispersion, enabling some of these more exciting applications in an integrated platform. This paper presents an overview of Dirac-cone zero-index metamaterials, including the fundamental physics, history and demonstration in the optical regime, as well as current challenges and future directions.

4.
Opt Express ; 25(11): 12381-12399, 2017 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-28786594

RESUMO

Zero-index materials exhibit exotic optical properties that can be utilized for integrated-optics applications. However, practical implementation requires compatibility with complementary metallic-oxide-semiconductor (CMOS) technologies. We demonstrate a CMOS-compatible zero-index metamaterial consisting of a square array of air holes in a 220-nm-thick silicon-on-insulator (SOI) wafer. This design supports zero-index modes with Dirac-cone dispersion. The metamaterial is entirely composed of silicon and offers compatibility through low-aspect-ratio structures that can be simply fabricated in a standard device layer. This platform enables mass adoption and exploration of zero-index-based photonic devices at low cost and high fidelity.

5.
Opt Express ; 25(7): 8326-8334, 2017 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-28380947

RESUMO

Zero-index metamaterials (ZIMs) offer unprecedented ways to manipulate the flow of light, and are of interest for wide range of applications including optical cloaking, super-coupling, and unconventional phase-matching properties in nonlinear optics. Impedance-matched ZIMs can be obtained through a photonic Dirac-cone (PDC) dispersion induced by an accidental degeneracy of an electric monopole and a transverse magnetic dipole mode at the center of the Brillouin zone. Therefore, PDC is very sensitive to fabrication imperfections. In this work, we propose and demonstrate fabrication-tolerant all-dielectric ZIM in telecom regime that supports near PDC dispersion over much wider parameter space than conventional designs. The prism device integrated with Si photonics is fabricated and measured for the verification.

6.
ACS Nano ; 11(4): 3671-3680, 2017 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-28291329

RESUMO

Efficiently delivering functional cargo to millions of cells on the time scale of minutes will revolutionize gene therapy, drug discovery, and high-throughput screening. Recent studies of intracellular delivery with thermoplasmonic structured surfaces show promising results but in most cases require time- or cost-intensive fabrication or lead to unreproducible surfaces. We designed and fabricated large-area (14 × 14 mm), photolithography-based, template-stripped plasmonic substrates that are nanosecond laser-activated to form transient pores in cells for cargo entry. We optimized fabrication to produce plasmonic structures that are ultrasmooth and precisely patterned over large areas. We used flow cytometry to characterize the delivery efficiency of cargos ranging in size from 0.6 to 2000 kDa to cells (up to 95% for the smallest molecule) and viability of cells (up to 98%). This technique offers a throughput of 50000 cells/min, which can be scaled up as necessary. This technique is also cost-effective as each large-area photolithography substrate can be used to deliver cargo to millions of cells, and switching to a nanosecond laser makes the setup cheaper and easier to use. The approach we present offers additional desirable features: spatial selectivity, reproducibility, minimal residual fragments, and cost-effective fabrication. This research supports the development of safer genetic and viral disease therapies as well as research tools for fundamental biological research that rely on effectively delivering molecules to millions of living cells.


Assuntos
Sistemas de Liberação de Medicamentos , Ouro/química , Lasers , Nanopartículas Metálicas/química , Sobrevivência Celular , Citometria de Fluxo , Células HeLa , Humanos , Tamanho da Partícula , Processos Fotoquímicos , Propriedades de Superfície , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA