Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Ano de publicação
Intervalo de ano de publicação
1.
J Sports Sci ; 41(17): 1635-1642, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38049956

RESUMO

Previous investigations comparing Torque-Cadence (T-C) and Power-Cadence (P-C) profiles derived from seated and standing positions and field and laboratory conditions are not congruent with current methodological recommendations. Consequently, the aim of this investigation was to compare seated and standing T-C and P-C profiles generated from field and laboratory testing. Thirteen world-class and elite track sprint cyclists (n = 7 males, maximal power output (Pmax) = 2112 ± 395 W; n = 6 females, Pmax = 1223 ± 102 W) completed two testing sessions in which field- and laboratory-derived T-C and P-C profiles were identified. Standing P-C profiles had significantly (p < 0.05) greater Pmax than seated profiles, however there were no significant differences in optimal cadence (Fopt) between seated and standing positions. Pmax and Fopt were significantly lower in field-derived profiles in both positions compared to laboratory-derived profiles. However, there was no significant difference in the goodness-of-fit (R2) of the P-C profiles between laboratory (0.985 ± 0.02) and field-testing (0.982 ± 0.02) in each position. Valid T-C and P-C profiles can be constructed from field and laboratory protocols; however, the mechanical variables derived from the seated and standing and field and laboratory profiles cannot be used interchangeably. Both field and laboratory-derived profiles provide meaningful information and provide complementary insights into cyclists' capacity to produce power output.


Assuntos
Ciclismo , Teste de Esforço , Masculino , Feminino , Humanos , Teste de Esforço/métodos , Postura Sentada , Posição Ortostática , Torque
2.
J Sports Sci ; 41(24): 2229-2235, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38369850

RESUMO

Optimising cadence through appropriate gear selection is a key consideration for track sprint cycling performance, yet the influence of cadence on fatigue (i.e., decrement in power output) within a maximal sprint is not well understood. The aim of this study was to identify the influence of cadence on fatigue during maximal sprint cycling. Eleven world-class and elite track sprint cyclists (n = 6 men, maximal power output (Pmax) = 1894 ± 351 W, optimal cadence (Fopt) = 134 ± 8 rev∙min-1: n = 5 women, Pmax = 1114 ± 80 W, Fopt = 124 ± 8 rev∙min-1) completed two testing sessions where power-cadence profiles were constructed to determine the Fopt associated with Pmax. Cyclists also performed three maximal 15-s sprints (Fopt, ±15%Fopt) to identify fatigue per pedal stroke across these cadence ranges. There was no significant difference (p = 0.2) in the absolute fatigue per pedal stroke when cadence was fixed 15% above (16.7 ± 6.1 W∙stroke-1) and below (15.3 ± 5.1 W∙stroke-1) Fopt. Similarly, there was no significant difference in the relative fatigue per pedal stroke (% peak power∙stroke-1) across Fopt and ± 15%Fopt trials (p = 0.12). The relative decrement in power output is equivalent across the ± 15%Fopt cadence range. As such, a higher-geared, lower-cadence approach to maximal sprint cycling could be a viable method to minimise maximal pedal strokes and reduce the decrement in power output.


Assuntos
Ciclismo , Acidente Vascular Cerebral , Masculino , Humanos , Feminino , Fadiga
3.
J Sports Sci ; 39(1): 84-90, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32787678

RESUMO

This study aimed to compare mechanical variables derived from torque-cadence and power-cadence profiles established from different cycle ergometer modes (isoinertial and isokinetic) and modelling procedures (second- and third-order polynomials), whilst employing a novel method to validate the theoretical maximal power output (Pmax). Nineteen well-trained cyclists (n = 12 males) completed two experimental sessions comprising six, 6-s maximal isoinertial or isokinetic cycling sprints. Maximal pedal strokes were extracted to construct power-cadence relationships using second- and third-order polynomials. A 6-s sprint at the optimal cadence (Fopt) or optimal resistance (Topt) was performed to assess construct validity of Pmax. No differences were found in the mechanical parameters when derived from isokinetic (Pmax = 1311 ± 415, Fopt = 118 ± 12) or isoinertial modes (Pmax = 1320 ± 421, Fopt = 116 ± 19). However, R2 improved (P < 0.02) when derived from isoinertial sprints. Third-order polynomial modelling improved goodness of fit values (Standard Error, adjusted R2), but derived similar mechanical parameters. Finally, peak power output during the optimised sprint did not significantly differ from the theoretical Pmax in both cycling modes, thus providing construct validity. The most accurate P-C profile can be derived from isoinertial cycling sprints, modelled using third-order polynomial equations.


Assuntos
Desempenho Atlético/fisiologia , Ciclismo/fisiologia , Fenômenos Biomecânicos/fisiologia , Esforço Físico/fisiologia , Adolescente , Adulto , Análise de Variância , Feminino , Humanos , Masculino , Modelos Teóricos , Torque , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA