Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
Cell ; 185(14): 2559-2575.e28, 2022 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-35688146

RESUMO

A central goal of genetics is to define the relationships between genotypes and phenotypes. High-content phenotypic screens such as Perturb-seq (CRISPR-based screens with single-cell RNA-sequencing readouts) enable massively parallel functional genomic mapping but, to date, have been used at limited scales. Here, we perform genome-scale Perturb-seq targeting all expressed genes with CRISPR interference (CRISPRi) across >2.5 million human cells. We use transcriptional phenotypes to predict the function of poorly characterized genes, uncovering new regulators of ribosome biogenesis (including CCDC86, ZNF236, and SPATA5L1), transcription (C7orf26), and mitochondrial respiration (TMEM242). In addition to assigning gene function, single-cell transcriptional phenotypes allow for in-depth dissection of complex cellular phenomena-from RNA processing to differentiation. We leverage this ability to systematically identify genetic drivers and consequences of aneuploidy and to discover an unanticipated layer of stress-specific regulation of the mitochondrial genome. Our information-rich genotype-phenotype map reveals a multidimensional portrait of gene and cellular function.


Assuntos
Genômica , Análise de Célula Única , Sistemas CRISPR-Cas/genética , Mapeamento Cromossômico , Genótipo , Fenótipo , Análise de Célula Única/métodos
2.
Mol Cell ; 83(3): 416-427, 2023 02 02.
Artigo em Inglês | MEDLINE | ID: mdl-36634676

RESUMO

Integrator is a metazoan-specific protein complex capable of inducing termination at all RNAPII-transcribed loci. Integrator recognizes paused, promoter-proximal RNAPII and drives premature termination using dual enzymatic activities: an endonuclease that cleaves nascent RNA and a protein phosphatase that removes stimulatory phosphorylation associated with RNAPII pause release and productive elongation. Recent breakthroughs in structural biology have revealed the overall architecture of Integrator and provided insights into how multiple Integrator modules are coordinated to elicit termination effectively. Furthermore, functional genomics and biochemical studies have unraveled how Integrator-mediated termination impacts protein-coding and noncoding loci. Here, we review the current knowledge about the assembly and activity of Integrator and describe the role of Integrator in gene regulation, highlighting the importance of this complex for human health.


Assuntos
Regulação da Expressão Gênica , RNA Polimerase II , Animais , Humanos , Fosfoproteínas Fosfatases/genética , Fosforilação , RNA Polimerase II/metabolismo , Transcrição Gênica , Proteínas/genética , Proteínas/metabolismo
3.
Mol Cell ; 82(22): 4232-4245.e11, 2022 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-36309014

RESUMO

RNA polymerase II (RNAPII) pausing in early elongation is critical for gene regulation. Paused RNAPII can be released into productive elongation by the kinase P-TEFb or targeted for premature termination by the Integrator complex. Integrator comprises endonuclease and phosphatase activities, driving termination by cleavage of nascent RNA and removal of stimulatory phosphorylation. We generated a degron system for rapid Integrator endonuclease (INTS11) depletion to probe the direct consequences of Integrator-mediated RNA cleavage. Degradation of INTS11 elicits nearly universal increases in active early elongation complexes. However, these RNAPII complexes fail to achieve optimal elongation rates and exhibit persistent Integrator phosphatase activity. Thus, only short transcripts are significantly upregulated following INTS11 loss, including transcription factors, signaling regulators, and non-coding RNAs. We propose a uniform molecular function for INTS11 across all RNAPII-transcribed loci, with differential effects on particular genes, pathways, or RNA biotypes reflective of transcript lengths rather than specificity of Integrator activity.


Assuntos
Endonucleases , RNA Polimerase II , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Endonucleases/genética , Regiões Promotoras Genéticas , RNA , Monoéster Fosfórico Hidrolases/metabolismo , Transcrição Gênica
4.
Mol Cell ; 80(2): 345-358.e9, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32966759

RESUMO

Efficient release of promoter-proximally paused RNA Pol II into productive elongation is essential for gene expression. Recently, we reported that the Integrator complex can bind paused RNA Pol II and drive premature transcription termination, potently attenuating the activity of target genes. Premature termination requires RNA cleavage by the endonuclease subunit of Integrator, but the roles of other Integrator subunits in gene regulation have yet to be elucidated. Here we report that Integrator subunit 8 (IntS8) is critical for transcription repression and required for association with protein phosphatase 2A (PP2A). We find that Integrator-bound PP2A dephosphorylates the RNA Pol II C-terminal domain and Spt5, preventing the transition to productive elongation. Thus, blocking PP2A association with Integrator stimulates pause release and gene activity. These results reveal a second catalytic function associated with Integrator-mediated transcription termination and indicate that control of productive elongation involves active competition between transcriptional kinases and phosphatases.


Assuntos
Proteínas de Drosophila/metabolismo , Proteína Fosfatase 2/metabolismo , Subunidades Proteicas/metabolismo , Fatores de Transcrição/metabolismo , Terminação da Transcrição Genética , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Sequência Conservada , Proteínas de Drosophila/química , Drosophila melanogaster , Regulação da Expressão Gênica , Loci Gênicos , Humanos , Fosforilação , Regiões Promotoras Genéticas , Subunidades Proteicas/química , RNA Polimerase II/química , RNA Polimerase II/metabolismo , Transdução de Sinais , Especificidade por Substrato , Fatores de Transcrição/química
5.
Mol Cell ; 76(5): 738-752.e7, 2019 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-31809743

RESUMO

The transition of RNA polymerase II (Pol II) from initiation to productive elongation is a central, regulated step in metazoan gene expression. At many genes, Pol II pauses stably in early elongation, remaining engaged with the 25- to 60-nt-long nascent RNA for many minutes while awaiting signals for release into the gene body. However, 15%-20% of genes display highly unstable promoter Pol II, suggesting that paused polymerase might dissociate from template DNA at these promoters and release a short, non-productive mRNA. Here, we report that paused Pol II can be actively destabilized by the Integrator complex. Specifically, we present evidence that Integrator utilizes its RNA endonuclease activity to cleave nascent RNA and drive termination of paused Pol II. These findings uncover a previously unappreciated mechanism of metazoan gene repression, akin to bacterial transcription attenuation, wherein promoter-proximal Pol II is prevented from entering productive elongation through factor-regulated termination.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Regiões Promotoras Genéticas , RNA Polimerase II/metabolismo , RNA Mensageiro/biossíntese , Elongação da Transcrição Genética , Animais , Linhagem Celular , Proteínas de Ligação a DNA/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , RNA Polimerase II/genética , RNA Mensageiro/genética
6.
Genes Dev ; 33(21-22): 1525-1538, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31530651

RESUMO

Cellular homeostasis requires transcriptional outputs to be coordinated, and many events post-transcription initiation can dictate the levels and functions of mature transcripts. To systematically identify regulators of inducible gene expression, we performed high-throughput RNAi screening of the Drosophila Metallothionein A (MtnA) promoter. This revealed that the Integrator complex, which has a well-established role in 3' end processing of small nuclear RNAs (snRNAs), attenuates MtnA transcription during copper stress. Integrator complex subunit 11 (IntS11) endonucleolytically cleaves MtnA transcripts, resulting in premature transcription termination and degradation of the nascent RNAs by the RNA exosome, a complex also identified in the screen. Using RNA-seq, we then identified >400 additional Drosophila protein-coding genes whose expression increases upon Integrator depletion. We focused on a subset of these genes and confirmed that Integrator is bound to their 5' ends and negatively regulates their transcription via IntS11 endonuclease activity. Many noncatalytic Integrator subunits, which are largely dispensable for snRNA processing, also have regulatory roles at these protein-coding genes, possibly by controlling Integrator recruitment or RNA polymerase II dynamics. Altogether, our results suggest that attenuation via Integrator cleavage limits production of many full-length mRNAs, allowing precise control of transcription outputs.


Assuntos
Proteínas de Drosophila/genética , Drosophila/genética , Regulação da Expressão Gênica , Metalotioneína/genética , Regiões Promotoras Genéticas/genética , RNA Mensageiro/metabolismo , Animais , Linhagem Celular , Cobre/toxicidade , Endorribonucleases/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Ligação Proteica , Clivagem do RNA , Estresse Fisiológico/efeitos dos fármacos
7.
Am J Hum Genet ; 110(5): 774-789, 2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37054711

RESUMO

The Integrator complex is a multi-subunit protein complex that regulates the processing of nascent RNAs transcribed by RNA polymerase II (RNAPII), including small nuclear RNAs, enhancer RNAs, telomeric RNAs, viral RNAs, and protein-coding mRNAs. Integrator subunit 11 (INTS11) is the catalytic subunit that cleaves nascent RNAs, but, to date, mutations in this subunit have not been linked to human disease. Here, we describe 15 individuals from 10 unrelated families with bi-allelic variants in INTS11 who present with global developmental and language delay, intellectual disability, impaired motor development, and brain atrophy. Consistent with human observations, we find that the fly ortholog of INTS11, dIntS11, is essential and expressed in the central nervous systems in a subset of neurons and most glia in larval and adult stages. Using Drosophila as a model, we investigated the effect of seven variants. We found that two (p.Arg17Leu and p.His414Tyr) fail to rescue the lethality of null mutants, indicating that they are strong loss-of-function variants. Furthermore, we found that five variants (p.Gly55Ser, p.Leu138Phe, p.Lys396Glu, p.Val517Met, and p.Ile553Glu) rescue lethality but cause a shortened lifespan and bang sensitivity and affect locomotor activity, indicating that they are partial loss-of-function variants. Altogether, our results provide compelling evidence that integrity of the Integrator RNA endonuclease is critical for brain development.


Assuntos
Proteínas de Drosophila , Doenças do Sistema Nervoso , Adulto , Animais , Humanos , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Mutação/genética , RNA Mensageiro
8.
RNA ; 30(7): 866-890, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38627019

RESUMO

The sequence-specific RNA-binding protein Pumilio (Pum) controls Drosophila development; however, the network of mRNAs that it regulates remains incompletely characterized. In this study, we use knockdown and knockout approaches coupled with RNA-seq to measure the impact of Pum on the transcriptome of Drosophila cells in culture. We also use an improved RNA coimmunoprecipitation method to identify Pum-bound mRNAs in Drosophila embryos. Integration of these data sets with the locations of Pum-binding motifs across the transcriptome reveals novel direct Pum target genes involved in neural, muscle, wing, and germ cell development and in cellular proliferation. These genes include components of Wnt, TGF-ß, MAPK/ERK, and Notch signaling pathways, DNA replication, and lipid metabolism. We identify the mRNAs regulated by the CCR4-NOT deadenylase complex, a key factor in Pum-mediated repression, and observe concordant regulation of Pum:CCR4-NOT target mRNAs. Computational modeling reveals that Pum binding, binding site number, clustering, and sequence context are important determinants of regulation. In contrast, we show that the responses of direct mRNA targets to Pum-mediated repression are not influenced by the content of optimal synonymous codons. Moreover, contrary to a prevailing model, we do not detect a role for CCR4-NOT in the degradation of mRNAs with low codon optimality. Together, the results of this work provide new insights into the Pum regulatory network and mechanisms and the parameters that influence the efficacy of Pum-mediated regulation.


Assuntos
Proteínas de Drosophila , Proteínas de Ligação a RNA , Transcriptoma , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Proteínas de Ligação a RNA/metabolismo , Proteínas de Ligação a RNA/genética , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Ribonucleases/metabolismo , Ribonucleases/genética , Regulação da Expressão Gênica no Desenvolvimento , Sítios de Ligação , Ligação Proteica , Drosophila/genética , Drosophila/metabolismo
9.
PLoS Pathog ; 20(5): e1012058, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38768227

RESUMO

Viral disruption of innate immune signaling is a critical determinant of productive infection. The Human Cytomegalovirus (HCMV) UL26 protein prevents anti-viral gene expression during infection, yet the mechanisms involved are unclear. We used TurboID-driven proximity proteomics to identify putative UL26 interacting proteins during infection to address this issue. We find that UL26 forms a complex with several immuno-regulatory proteins, including several STAT family members and various PIAS proteins, a family of E3 SUMO ligases. Our results indicate that UL26 prevents STAT phosphorylation during infection and antagonizes transcriptional activation induced by either interferon α (IFNA) or tumor necrosis factor α (TNFα). Additionally, we find that the inactivation of PIAS1 sensitizes cells to inflammatory stimulation, resulting in an anti-viral transcriptional environment similar to ΔUL26 infection. Further, PIAS1 is important for HCMV cell-to-cell spread, which depends on the presence of UL26, suggesting that the UL26-PIAS1 interaction is vital for modulating intrinsic anti-viral defense.


Assuntos
Infecções por Citomegalovirus , Citomegalovirus , Proteínas Inibidoras de STAT Ativados , Proteínas Virais , Humanos , Citomegalovirus/imunologia , Proteínas Inibidoras de STAT Ativados/metabolismo , Proteínas Inibidoras de STAT Ativados/genética , Infecções por Citomegalovirus/virologia , Infecções por Citomegalovirus/imunologia , Infecções por Citomegalovirus/genética , Proteínas Virais/metabolismo , Proteínas Virais/genética , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/metabolismo , Proteínas Modificadoras Pequenas Relacionadas à Ubiquitina/genética , Regulação Viral da Expressão Gênica , Imunidade Inata
10.
Nature ; 574(7777): 273-277, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31578525

RESUMO

Transcription and pre-mRNA splicing are key steps in the control of gene expression and mutations in genes regulating each of these processes are common in leukaemia1,2. Despite the frequent overlap of mutations affecting epigenetic regulation and splicing in leukaemia, how these processes influence one another to promote leukaemogenesis is not understood and, to our knowledge, there is no functional evidence that mutations in RNA splicing factors initiate leukaemia. Here, through analyses of transcriptomes from 982 patients with acute myeloid leukaemia, we identified frequent overlap of mutations in IDH2 and SRSF2 that together promote leukaemogenesis through coordinated effects on the epigenome and RNA splicing. Whereas mutations in either IDH2 or SRSF2 imparted distinct splicing changes, co-expression of mutant IDH2 altered the splicing effects of mutant SRSF2 and resulted in more profound splicing changes than either mutation alone. Consistent with this, co-expression of mutant IDH2 and SRSF2 resulted in lethal myelodysplasia with proliferative features in vivo and enhanced self-renewal in a manner not observed with either mutation alone. IDH2 and SRSF2 double-mutant cells exhibited aberrant splicing and reduced expression of INTS3, a member of the integrator complex3, concordant with increased stalling of RNA polymerase II (RNAPII). Aberrant INTS3 splicing contributed to leukaemogenesis in concert with mutant IDH2 and was dependent on mutant SRSF2 binding to cis elements in INTS3 mRNA and increased DNA methylation of INTS3. These data identify a pathogenic crosstalk between altered epigenetic state and splicing in a subset of leukaemias, provide functional evidence that mutations in splicing factors drive myeloid malignancy development, and identify spliceosomal changes as a mediator of IDH2-mutant leukaemogenesis.


Assuntos
Processamento Alternativo/genética , Carcinogênese/genética , Epigênese Genética , Leucemia Mieloide Aguda/genética , Animais , Linhagem Celular Tumoral , Proliferação de Células , Metilação de DNA , Proteínas de Ligação a DNA/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Isocitrato Desidrogenase/genética , Masculino , Mutação/genética , RNA Polimerase II/metabolismo , Fatores de Processamento de Serina-Arginina/genética , Transcriptoma
11.
Nat Rev Mol Cell Biol ; 13(2): 115-26, 2012 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-22266761

RESUMO

Histone side chains are post-translationally modified at multiple sites, including at Lys36 on histone H3 (H3K36). Several enzymes from yeast and humans, including the methyltransferases SET domain-containing 2 (Set2) and nuclear receptor SET domain-containing 1 (NSD1), respectively, alter the methylation status of H3K36, and significant progress has been made in understanding how they affect chromatin structure and function. Although H3K36 methylation is most commonly associated with the transcription of active euchromatin, it has also been implicated in diverse processes, including alternative splicing, dosage compensation and transcriptional repression, as well as DNA repair and recombination. Disrupted placement of methylated H3K36 within the chromatin landscape can lead to a range of human diseases, underscoring the importance of this modification.


Assuntos
Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Lisina/metabolismo , Processamento de Proteína Pós-Traducional/fisiologia , Animais , Compreensão/fisiologia , Expressão Gênica/fisiologia , Humanos , Metilação , Modelos Biológicos
12.
RNA ; 27(4): 445-464, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33397688

RESUMO

Pumilio paralogs, PUM1 and PUM2, are sequence-specific RNA-binding proteins that are essential for vertebrate development and neurological functions. PUM1&2 negatively regulate gene expression by accelerating degradation of specific mRNAs. Here, we determined the repression mechanism and impact of human PUM1&2 on the transcriptome. We identified subunits of the CCR4-NOT (CNOT) deadenylase complex required for stable interaction with PUM1&2 and to elicit CNOT-dependent repression. Isoform-level RNA sequencing revealed broad coregulation of target mRNAs through the PUM-CNOT repression mechanism. Functional dissection of the domains of PUM1&2 identified a conserved amino-terminal region that confers the predominant repressive activity via direct interaction with CNOT. In addition, we show that the mRNA decapping enzyme, DCP2, has an important role in repression by PUM1&2 amino-terminal regions. Our results support a molecular model of repression by human PUM1&2 via direct recruitment of CNOT deadenylation machinery in a decapping-dependent mRNA decay pathway.


Assuntos
RNA Mensageiro/genética , Proteínas de Ligação a RNA/genética , Receptores CCR4/genética , Fatores de Transcrição/genética , Transcriptoma , Monofosfato de Adenosina , Sequência de Bases , Sítios de Ligação , Endorribonucleases/genética , Endorribonucleases/metabolismo , Regulação da Expressão Gênica , Genes Reporter , Células HCT116 , Humanos , Luciferases/genética , Luciferases/metabolismo , Ligação Proteica , Estabilidade de RNA , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Receptores CCR4/metabolismo , Fatores de Transcrição/metabolismo
13.
J Neurooncol ; 163(3): 623-634, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37389756

RESUMO

PURPOSE: Gliomas and their surrounding microenvironment constantly interact to promote tumorigenicity, yet the underlying posttranscriptional regulatory mechanisms that govern this interplay are poorly understood. METHODS: Utilizing our established PAC-seq approach and PolyAMiner bioinformatic analysis pipeline, we deciphered the NUDT21-mediated differential APA dynamics in glioma cells. RESULTS: We identified LAMC1 as a critical NUDT21 alternative polyadenylation (APA) target, common in several core glioma-driving signaling pathways. qRT-PCR analysis confirmed that NUDT21-knockdown in glioma cells results in the preferred usage of the proximal polyA signal (PAS) of LAMC1. Functional studies revealed that NUDT21-knockdown-induced 3'UTR shortening of LAMC1 is sufficient to cause translational gain, as LAMC1 protein is upregulated in these cells compared to their respective controls. We demonstrate that 3'UTR shortening of LAMC1 after NUDT21 knockdown removes binding sites for miR-124/506, thereby relieving potent miRNA-based repression of LAMC1 expression. Remarkably, we report that the knockdown of NUDT21 significantly promoted glioma cell migration and that co-depletion of LAMC1 with NUDT21 abolished this effect. Lastly, we observed that LAMC1 3'UTR shortening predicts poor prognosis of low-grade glioma patients from The Cancer Genome Atlas. CONCLUSION: This study identifies NUDT21 as a core alternative polyadenylation factor that regulates the tumor microenvironment through differential APA and loss of miR-124/506 inhibition of LAMC1. Knockdown of NUDT21 in GBM cells mediates 3'UTR shortening of LAMC1, contributing to an increase in LAMC1, increased glioma cell migration/invasion, and a poor prognosis.


Assuntos
Fator de Especificidade de Clivagem e Poliadenilação , Glioma , MicroRNAs , Humanos , Regiões 3' não Traduzidas , Glioma/genética , MicroRNAs/metabolismo , Poliadenilação , Transdução de Sinais , Microambiente Tumoral , Fator de Especificidade de Clivagem e Poliadenilação/metabolismo
15.
Mol Cell ; 56(1): 128-139, 2014 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-25201415

RESUMO

In unicellular organisms, initiation is the rate-limiting step in transcription; in metazoan organisms, the transition from initiation to productive elongation is also important. Here, we show that the RNA polymerase II (RNAPII)-associated multiprotein complex, Integrator, plays a critical role in both initiation and the release of paused RNAPII at immediate early genes (IEGs) following transcriptional activation by epidermal growth factor (EGF) in human cells. Integrator is recruited to the IEGs in a signal-dependent manner and is required to engage and recruit the super elongation complex (SEC) to EGF-responsive genes to allow release of paused RNAPII and productive transcription elongation.


Assuntos
RNA Polimerase II/metabolismo , Iniciação da Transcrição Genética , Ativação Transcricional , Fator de Crescimento Epidérmico/metabolismo , Fator de Crescimento Epidérmico/fisiologia , Células HeLa , Humanos
16.
Nucleic Acids Res ; 48(12): e69, 2020 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-32463457

RESUMO

Almost 70% of human genes undergo alternative polyadenylation (APA) and generate mRNA transcripts with varying lengths, typically of the 3' untranslated regions (UTR). APA plays an important role in development and cellular differentiation, and its dysregulation can cause neuropsychiatric diseases and increase cancer severity. Increasing awareness of APA's role in human health and disease has propelled the development of several 3' sequencing (3'Seq) techniques that allow for precise identification of APA sites. However, despite the recent data explosion, there are no robust computational tools that are precisely designed to analyze 3'Seq data. Analytical approaches that have been used to analyze these data predominantly use proximal to distal usage. With about 50% of human genes having more than two APA isoforms, current methods fail to capture the entirety of APA changes and do not account for non-proximal to non-distal changes. Addressing these key challenges, this study demonstrates PolyA-miner, an algorithm to accurately detect and assess differential alternative polyadenylation specifically from 3'Seq data. Genes are abstracted as APA matrices, and differential APA usage is inferred using iterative consensus non-negative matrix factorization (NMF) based clustering. PolyA-miner accounts for all non-proximal to non-distal APA switches using vector projections and reflects precise gene-level 3'UTR changes. It can also effectively identify novel APA sites that are otherwise undetected when using reference-based approaches. Evaluation on multiple datasets-first-generation MicroArray Quality Control (MAQC) brain and Universal Human Reference (UHR) PolyA-seq data, recent glioblastoma cell line NUDT21 knockdown Poly(A)-ClickSeq (PAC-seq) data, and our own mouse hippocampal and human stem cell-derived neuron PAC-seq data-strongly supports the value and protocol-independent applicability of PolyA-miner. Strikingly, in the glioblastoma cell line data, PolyA-miner identified more than twice the number of genes with APA changes than initially reported. With the emerging importance of APA in human development and disease, PolyA-miner can significantly improve data analysis and help decode the underlying APA dynamics.


Assuntos
Algoritmos , Poliadenilação , RNA-Seq/métodos , Regiões 3' não Traduzidas , Animais , Humanos , Camundongos , RNA-Seq/normas , Padrões de Referência , Software
17.
Methods ; 155: 20-29, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30625385

RESUMO

The use of RNA-seq as a generalized tool to measure the differential expression of genes has essentially replaced the use of the microarray. Despite the acknowledged technical advantages to this approach, RNA-seq library preparation remains mostly conducted by core facilities rather than in the laboratory due to the infrastructure, expertise and time required per sample. We have recently described two 'click-chemistry' based library construction methods termed ClickSeq and Poly(A)-ClickSeq (PAC-seq) as alternatives to conventional RNA-seq that are both cost effective and rely on straightforward reagents readily available to most labs. ClickSeq is random-primed and can sequence any (unfragmented) RNA template, while PAC-seq is targeted to poly(A) tails of mRNAs. Here, we further develop PAC-seq as a platform that allows for simultaneous mapping of poly(A) sites and the measurement of differential expression of genes. We provide a detailed protocol, descriptions of appropriate computational pipelines, and a proof-of-principle dataset to illustrate the technique. PAC-seq offers a unique advantage over other 3' end mapping protocols in that it does not require additional purification, selection, or fragmentation steps allowing sample preparation directly from crude total cellular RNA. We have shown that PAC-seq is able to accurately and sensitively count transcripts for differential gene expression analysis, as well as identify alternative poly(A) sites and determine the precise nucleotides of the poly(A) tail boundaries.


Assuntos
Química Click/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Proteínas de Insetos/genética , Poli A/genética , RNA Mensageiro/genética , Região 3'-Flanqueadora , Animais , Células Cultivadas , Drosophila melanogaster/citologia , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Biblioteca Gênica , Genoma de Inseto , Proteínas de Insetos/metabolismo , Poli A/química , Poli A/metabolismo , Poliadenilação , RNA Mensageiro/química , RNA Mensageiro/metabolismo , Análise de Sequência de RNA/estatística & dados numéricos
18.
Nature ; 510(7505): 412-6, 2014 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-24814343

RESUMO

The global shortening of messenger RNAs through alternative polyadenylation (APA) that occurs during enhanced cellular proliferation represents an important, yet poorly understood mechanism of regulated gene expression. The 3' untranslated region (UTR) truncation of growth-promoting mRNA transcripts that relieves intrinsic microRNA- and AU-rich-element-mediated repression has been observed to correlate with cellular transformation; however, the importance to tumorigenicity of RNA 3'-end-processing factors that potentially govern APA is unknown. Here we identify CFIm25 as a broad repressor of proximal poly(A) site usage that, when depleted, increases cell proliferation. Applying a regression model on standard RNA-sequencing data for novel APA events, we identified at least 1,450 genes with shortened 3' UTRs after CFIm25 knockdown, representing 11% of significantly expressed mRNAs in human cells. Marked increases in the expression of several known oncogenes, including cyclin D1, are observed as a consequence of CFIm25 depletion. Importantly, we identified a subset of CFIm25-regulated APA genes with shortened 3' UTRs in glioblastoma tumours that have reduced CFIm25 expression. Downregulation of CFIm25 expression in glioblastoma cells enhances their tumorigenic properties and increases tumour size, whereas CFIm25 overexpression reduces these properties and inhibits tumour growth. These findings identify a pivotal role of CFIm25 in governing APA and reveal a previously unknown connection between CFIm25 and glioblastoma tumorigenicity.


Assuntos
Carcinogênese/genética , Regulação Neoplásica da Expressão Gênica , Glioblastoma/fisiopatologia , Poliadenilação , RNA Mensageiro/metabolismo , Fatores de Poliadenilação e Clivagem de mRNA/metabolismo , Regiões 3' não Traduzidas , Animais , Carcinogênese/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Células HeLa , Xenoenxertos , Humanos , Masculino , Camundongos , Análise de Regressão
19.
Nucleic Acids Res ; 46(D1): D1027-D1030, 2018 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-30053266

RESUMO

Widespread alternative polyadenylation (APA) occurs during enhanced cellular proliferation and transformation. Recently, we demonstrated that CFIm25-mediated 3' UTR shortening through APA promotes glioblastoma tumor growth in vitro and in vivo, further underscoring its significance to tumorigenesis. Here, we report The Cancer 3' UTR Atlas (TC3A), a comprehensive resource of APA usage for 10,537 tumors across 32 cancer types. These APA events represent potentially novel prognostic biomarkers and may uncover novel mechanisms for the regulation of cancer driver genes. TC3A is built on top of the now de facto standard cBioPortal. Therefore, the large community of existing cBioPortal users and clinical researchers will find TC3A familiar and immediately usable. TC3A is currently fully functional and freely available at http://tc3a.org.


Assuntos
Regiões 3' não Traduzidas , Bases de Dados de Ácidos Nucleicos , Neoplasias/genética , Poliadenilação , Humanos , Neoplasias/mortalidade , Interface Usuário-Computador
20.
Nucleic Acids Res ; 46(8): 4241-4255, 2018 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-29471365

RESUMO

Integrator (INT) is a transcriptional regulatory complex associated with RNA polymerase II that is required for the 3'-end processing of both UsnRNAs and enhancer RNAs. Integrator subunits 9 (INTS9) and INTS11 constitute the catalytic core of INT and are paralogues of the cleavage and polyadenylation specificity factors CPSF100 and CPSF73. While CPSF73/100 are known to associate with a third protein called Symplekin, there is no paralog of Symplekin within INT raising the question of how INTS9/11 associate with the other INT subunits. Here, we have identified that INTS4 is a specific and conserved interaction partner of INTS9/11 that does not interact with either subunit individually. Although INTS4 has no significant homology with Symplekin, it possesses N-terminal HEAT repeats similar to Symplekin but also contains a ß-sheet rich C-terminal region, both of which are important to bind INTS9/11. We assess three functions of INT including UsnRNA 3'-end processing, maintenance of Cajal body structural integrity, and formation of histone locus bodies to conclude that INTS4/9/11 are the most critical of the INT subunits for UsnRNA biogenesis. Altogether, these results indicate that INTS4/9/11 compose a heterotrimeric complex that likely represents the Integrator 'cleavage module' responsible for its endonucleolytic activity.


Assuntos
Endorribonucleases/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Drosophila/metabolismo , Células HeLa , Humanos , Proteínas Nucleares/química , RNA Nuclear Pequeno/metabolismo , Técnicas do Sistema de Duplo-Híbrido
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA