Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Org Biomol Chem ; 21(23): 4893-4908, 2023 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-37259568

RESUMO

Radiosumins are a structurally diverse family of low molecular weight natural products that are produced by cyanobacteria and exhibit potent serine protease inhibition. Members of this family are dipeptides characterized by the presence of two similar non-proteinogenic amino acids. Here we used a comparative bioinformatic analysis to identify radiosumin biosynthetic gene clusters from the genomes of 13 filamentous cyanobacteria. We used direct pathway cloning to capture and express the entire 16.8 kb radiosumin biosynthetic gene cluster from Dolichospermum planctonicum UHCC 0167 in Escherichia coli. Bioinformatic analysis demonstrates that radiosumins represent a new group of chorismate-derived non-aromatic secondary metabolites. High-resolution liquid chromatography-mass spectrometry, nuclear magnetic resonance spectroscopy and chemical degradation analysis revealed that cyanobacteria produce a cocktail of novel radiosumins. We report the chemical structure of radiosumin D, an N-methyl dipeptide, containing a special Aayp (2-amino-3-(4-amino-2-cyclohexen-1-ylidene) propionic acid) with R configuration that differs from radiosumin A-C, an N-Me derivative of Aayp (Amyp) and two acetyl groups. Radiosumin C inhibits all three human trypsin isoforms at micromolar concentrations with preference for trypsin-1 and -3 (IC50 values from 1.7 µM to >7.2 µM). These results provide a biosynthetic logic to explore the genetic and chemical diversity of the radiosumin family and suggest that these natural products may be a source of drug leads for selective human serine proteases inhibitors.


Assuntos
Produtos Biológicos , Biologia Computacional , Humanos , Tripsina/genética , Tripsina/metabolismo , Dipeptídeos/metabolismo , Clonagem Molecular , Família Multigênica , Produtos Biológicos/metabolismo , Vias Biossintéticas/genética
2.
Org Biomol Chem ; 19(25): 5577-5588, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34085692

RESUMO

Laxaphycins are a family of cyclic lipopeptides with synergistic antifungal and antiproliferative activities. They are produced by multiple cyanobacterial genera and comprise two sets of structurally unrelated 11- and 12-residue macrocyclic lipopeptides. Here, we report the discovery of new antifungal laxaphycins from Nostoc sp. UHCC 0702, which we name heinamides, through antimicrobial bioactivity screening. We characterized the chemical structures of eight heinamide structural variants A1-A3 and B1-B5. These variants contain the rare non-proteinogenic amino acids 3-hydroxy-4-methylproline, 4-hydroxyproline, 3-hydroxy-d-leucine, dehydrobutyrine, 5-hydroxyl ß-amino octanoic acid, and O-carbamoyl-homoserine. We obtained an 8.6-Mb complete genome sequence from Nostoc sp. UHCC 0702 and identified the 93 kb heinamide biosynthetic gene cluster. The structurally distinct heinamides A1-A3 and B1-B5 variants are synthesized using an unusual branching biosynthetic pathway. The heinamide biosynthetic pathway also encodes several enzymes that supply non-proteinogenic amino acids to the heinamide synthetase. Through heterologous expression, we showed that (2S,4R)-4-hydroxy-l-proline is supplied through the action of a novel enzyme LxaN, which hydroxylates l-proline. 11- and 12-residue heinamides have the characteristic synergistic activity of laxaphycins against Aspergillus flavus FBCC 2467. Structural and genetic information of heinamides may prove useful in future discovery of natural products and drug development.


Assuntos
Lipopeptídeos
3.
Mar Drugs ; 17(5)2019 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-31067786

RESUMO

Microcystins are a family of chemically diverse hepatotoxins produced by distantly related cyanobacteria and are potent inhibitors of eukaryotic protein phosphatases 1 and 2A. Here we provide evidence for the biosynthesis of rare variants of microcystin that contain a selection of homo-amino acids by the benthic strain Phormidium sp. LP904c. This strain produces at least 16 microcystin chemical variants many of which contain homophenylalanine or homotyrosine. We retrieved the complete 54.2 kb microcystin (mcy) gene cluster from a draft genome assembly. Analysis of the substrate specificity of McyB1 and McyC adenylation domain binding pockets revealed divergent substrate specificity sequences, which could explain the activation of homo-amino acids which were present in 31% of the microcystins detected and included variants such as MC-LHty, MC-HphHty, MC-LHph and MC-HphHph. The mcy gene cluster did not encode enzymes for the synthesis of homo-amino acids but may instead activate homo-amino acids produced during the synthesis of anabaenopeptins. We observed the loss of microcystin during cultivation of a closely related strain, Phormidium sp. DVL1003c. This study increases the knowledge of benthic cyanobacterial strains that produce microcystin variants and broadens the structural diversity of known microcystins.


Assuntos
Cianobactérias/genética , Cianobactérias/metabolismo , Microcistinas/biossíntese , Microcistinas/genética , Sequência de Aminoácidos , Aminoácidos/metabolismo , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Genes Bacterianos , Microcistinas/química , Família Multigênica , Filogenia , Domínios e Motivos de Interação entre Proteínas , Análise de Sequência de DNA
4.
Biochemistry ; 57(50): 6860-6867, 2018 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-30452235

RESUMO

Aromatic prenylation is an important step in the biosynthesis of many natural products and leads to an astonishing diversity of chemical structures. Cyanobactin pathways frequently encode aromatic prenyltransferases that catalyze the prenylation of these macrocyclic and linear peptides. Here we characterized the anacyclamide ( acy) biosynthetic gene cluster from Anabaena sp. UHCC-0232. Partial reconstitution of the anacyclamide pathway, heterologous expression, and in vitro biochemical characterization demonstrate that the AcyF enzyme, encoded in the acy biosynthetic gene cluster, is a Trp N-prenyltransferase. Bioinformatic analysis suggests the monophyletic origin and rapid diversification of cyanobactin prenyltransferase enzymes and the multiple origins of N-1 Trp prenylation in prenylated natural products. The AcyF enzyme displayed high flexibility toward a range of Trp-containing substrates and represents an interesting new tool for biocatalytic applications.


Assuntos
Dimetilaliltranstransferase/metabolismo , Peptídeos Cíclicos/biossíntese , Peptídeos Cíclicos/química , Sequência de Aminoácidos , Anabaena/enzimologia , Anabaena/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Produtos Biológicos/química , Produtos Biológicos/metabolismo , Vias Biossintéticas , Dimetilaliltranstransferase/genética , Genes Bacterianos , Família Multigênica , Filogenia , Prenilação , Especificidade por Substrato , Triptofano/química
5.
Appl Environ Microbiol ; 84(3)2018 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-29150506

RESUMO

Swinholides are 42-carbon ring polyketides with a 2-fold axis of symmetry. They are potent cytotoxins that disrupt the actin cytoskeleton. Swinholides were discovered from the marine sponge Theonella sp. and were long suspected to be produced by symbiotic bacteria. Misakinolide, a structural variant of swinholide, was recently demonstrated to be the product of a symbiotic heterotrophic proteobacterium. Here, we report the production of swinholide A by an axenic strain of the terrestrial cyanobacterium Nostoc sp. strain UHCC 0450. We located the 85-kb trans-AT polyketide synthase (PKS) swinholide biosynthesis gene cluster from a draft genome of Nostoc sp. UHCC 0450. The swinholide and misakinolide biosynthesis gene clusters share an almost identical order of catalytic domains, with 85% nucleotide sequence identity, and they group together in phylogenetic analysis. Our results resolve speculation around the true producer of swinholides and demonstrate that bacteria belonging to two distantly related phyla both produce structural variants of the same natural product. In addition, we described a biosynthesis cluster from Anabaena sp. strain UHCC 0451 for the synthesis of the cytotoxic and antifungal scytophycin. All of these biosynthesis gene clusters were closely related to each other and created a group of cytotoxic macrolide compounds produced by trans-AT PKSs of cyanobacteria and proteobacteria.IMPORTANCE Many of the drugs in use today originate from natural products. New candidate compounds for drug development are needed due to increased drug resistance. An increased knowledge of the biosynthesis of bioactive compounds can be used to aid chemical synthesis to produce novel drugs. Here, we show that a terrestrial axenic culture of Nostoc cyanobacterium produces swinholides, which have been previously found only from marine sponge or samples related to them. Swinholides are polyketides with a 2-fold axis of symmetry, and they are potent cytotoxins that disrupt the actin cytoskeleton. We describe the biosynthesis gene clusters of swinholide from Nostoc cyanobacteria, as well as the related cytotoxic and antifungal scytophycin from Anabaena cyanobacteria, and we study the evolution of their trans-AT polyketide synthases. Interestingly, swinholide is closely related to misakinolide produced by a symbiotic heterotrophic proteobacterium, demonstrating that bacteria belonging to two distantly related phyla and different habitats can produce similar natural products.


Assuntos
Proteínas de Bactérias/genética , Toxinas Marinhas/biossíntese , Família Multigênica , Nostoc/genética , Policetídeo Sintases/genética , Proteínas de Bactérias/metabolismo , Toxinas Marinhas/genética , Nostoc/metabolismo , Filogenia , Policetídeo Sintases/metabolismo , Análise de Sequência de DNA
6.
Proc Natl Acad Sci U S A ; 112(44): 13669-74, 2015 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-26474830

RESUMO

Cyclodextrins are cyclic oligosaccharides widely used in the pharmaceutical industry to improve drug delivery and to increase the solubility of hydrophobic compounds. Anabaenolysins are lipopeptides produced by cyanobacteria with potent lytic activity in cholesterol-containing membranes. Here, we identified the 23- to 24-kb gene clusters responsible for the production of the lipopeptide anabaenolysin. The hybrid nonribosomal peptide synthetase and polyketide synthase biosynthetic gene cluster is encoded in the genomes of three anabaenolysin-producing strains of Anabaena. We detected previously unidentified strains producing known anabaenolysins A and B and discovered the production of new variants of anabaenolysins C and D. Bioassays demonstrated that anabaenolysins have weak antifungal activity against Candida albicans. Surprisingly, addition of the hydrophilic fraction of the whole-cell extracts increased the antifungal activity of the hydrophobic anabaenolysins. The fraction contained compounds identified by NMR as α-, ß-, and γ-cyclodextrins, which undergo acetylation. Cyclodextrins have been used for decades to improve the solubility and bioavailability of many drugs including antifungal compounds. This study shows a natural example of cyclodextrins improving the solubility and efficacy of an antifungal compound in an ancient lineage of photosynthetic bacteria.


Assuntos
Antifúngicos/farmacologia , Proteínas de Bactérias/biossíntese , Cianobactérias/metabolismo , Ciclodextrinas/biossíntese , Cianobactérias/genética , Genes Bacterianos , Dados de Sequência Molecular
7.
Proc Natl Acad Sci U S A ; 111(18): E1909-17, 2014 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-24742428

RESUMO

Cyanobacteria produce a wide variety of cyclic peptides, including the widespread hepatotoxins microcystins and nodularins. Another class of peptides, cyclic glycosylated lipopeptides called hassallidins, show antifungal activity. Previously, two hassallidins (A and B) were reported from an epilithic cyanobacterium Hassallia sp. and found to be active against opportunistic human pathogenic fungi. Bioinformatic analysis of the Anabaena sp. 90 genome identified a 59-kb cryptic inactive nonribosomal peptide synthetase gene cluster proposed to be responsible for hassallidin biosynthesis. Here we describe the hassallidin biosynthetic pathway from Anabaena sp. SYKE748A, as well as the large chemical variation and common occurrence of hassallidins in filamentous cyanobacteria. Analysis demonstrated that 20 strains of the genus Anabaena carry hassallidin synthetase genes and produce a multitude of hassallidin variants that exhibit activity against Candida albicans. The compounds discovered here were distinct from previously reported hassallidins A and B. The IC50 of hassallidin D was 0.29-1.0 µM against Candida strains. A large variation in amino acids, sugars, their degree of acetylation, and fatty acid side chain length was detected. In addition, hassallidins were detected in other cyanobacteria including Aphanizomenon, Cylindrospermopsis raciborskii, Nostoc, and Tolypothrix. These compounds may protect some of the most important bloom-forming and globally distributed cyanobacteria against attacks by parasitic fungi.


Assuntos
Anabaena/metabolismo , Antifúngicos/metabolismo , Cianobactérias/metabolismo , Glicolipídeos/metabolismo , Glicopeptídeos/metabolismo , Lipopeptídeos/metabolismo , Peptídeos Cíclicos/metabolismo , Anabaena/genética , Antifúngicos/química , Antifúngicos/farmacologia , Candida albicans/efeitos dos fármacos , Cianobactérias/genética , Genes Bacterianos , Glicolipídeos/química , Glicolipídeos/genética , Glicopeptídeos/química , Glicopeptídeos/genética , Humanos , Lipopeptídeos/química , Lipopeptídeos/genética , Redes e Vias Metabólicas , Dados de Sequência Molecular , Estrutura Molecular , Família Multigênica , Ressonância Magnética Nuclear Biomolecular , Peptídeos Cíclicos/química , Peptídeos Cíclicos/genética , Filogenia
8.
Angew Chem Int Ed Engl ; 55(11): 3596-9, 2016 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-26846478

RESUMO

Cyanobactins are a rapidly growing family of linear and cyclic peptides produced by cyanobacteria. Kawaguchipeptins A and B, two macrocyclic undecapeptides reported earlier from Microcystis aeruginosa NIES-88, are shown to be products of the cyanobactin biosynthetic pathway. The 9 kb kawaguchipeptin (kgp) gene cluster was identified in a 5.26 Mb draft genome of Microcystis aeruginosa NIES-88. We verified that this gene cluster is responsible for the production of the kawaguchipeptins through heterologous expression of the kgp gene cluster in Escherichia coli. The KgpF prenyltransferase was overexpressed and was shown to prenylate C-3 of Trp residues in both linear and cyclic peptides in vitro. Our findings serve to further enhance the structural diversity of cyanobactins to include tryptophan-prenylated cyclic peptides.


Assuntos
Dimetilaliltranstransferase/metabolismo , Triptofano/metabolismo , Sequência de Aminoácidos , Dimetilaliltranstransferase/química , Escherichia coli/genética , Genoma Bacteriano , Microcystis/genética , Família Multigênica
9.
Appl Environ Microbiol ; 81(15): 5212-22, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26025890

RESUMO

Inorganic phosphorus (Pi) is one of the main growth-limiting factors of diazotrophic cyanobacteria. Due to human activity, the availability of Pi has increased in water bodies, resulting in eutrophication and the formation of massive cyanobacterial blooms. In this study, we examined the molecular responses of the cyanobacterium Anabaena sp. strain 90 to phosphorus deprivation, aiming at the identification of candidate genes to monitor the Pi status in cyanobacteria. Furthermore, this study increased the basic understanding of how phosphorus affects diazotrophic and bloom-forming cyanobacteria as a major growth-limiting factor. Based on RNA sequencing data, we identified 246 differentially expressed genes after phosphorus starvation and 823 differentially expressed genes after prolonged Pi limitation, most of them related to central metabolism and cellular growth. The transcripts of the genes related to phosphorus transport and assimilation (pho regulon) were most upregulated during phosphorus depletion. One of the most increased transcripts encodes a giant protein of 1,869 amino acid residues, which contains, among others, a phytase-like domain. Our findings predict its crucial role in phosphorus starvation, but future studies are still needed. Using two-dimensional difference in gel electrophoresis (2D-DIGE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS), we found 43 proteins that were differentially expressed after prolonged phosphorus stress. However, correlation analysis unraveled an association only to some extent between the transcriptomic and proteomic abundances. Based on the present results, we suggest that the method used for monitoring the Pi status in cyanobacterial bloom should contain wider combinations of pho regulon genes (e.g., PstABCS transport systems) in addition to the commonly used alkaline phosphatase gene alone.


Assuntos
Anabaena/efeitos dos fármacos , Perfilação da Expressão Gênica , Fósforo/metabolismo , Proteoma/análise , Estresse Fisiológico , Anabaena/crescimento & desenvolvimento , Cromatografia Líquida , Eletroforese em Gel Bidimensional , Redes e Vias Metabólicas/genética , RNA Bacteriano/química , RNA Bacteriano/genética , Análise de Sequência de DNA , Espectrometria de Massas em Tandem
10.
Mar Drugs ; 13(4): 2124-40, 2015 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-25871291

RESUMO

Cyanobacteria are photosynthetic prokaryotes found in a range of environments. They are infamous for the production of toxins, as well as bioactive compounds, which exhibit anticancer, antimicrobial and protease inhibition activities. Cyanobacteria produce a broad range of antifungals belonging to structural classes, such as peptides, polyketides and alkaloids. Here, we tested cyanobacteria from a wide variety of environments for antifungal activity. The potent antifungal macrolide scytophycin was detected in Anabaena sp. HAN21/1, Anabaena cf. cylindrica PH133, Nostoc sp. HAN11/1 and Scytonema sp. HAN3/2. To our knowledge, this is the first description of Anabaena strains that produce scytophycins. We detected antifungal glycolipopeptide hassallidin production in Anabaena spp. BIR JV1 and HAN7/1 and in Nostoc spp. 6sf Calc and CENA 219. These strains were isolated from brackish and freshwater samples collected in Brazil, the Czech Republic and Finland. In addition, three cyanobacterial strains, Fischerella sp. CENA 298, Scytonema hofmanni PCC 7110 and Nostoc sp. N107.3, produced unidentified antifungal compounds that warrant further characterization. Interestingly, all of the strains shown to produce antifungal compounds in this study belong to Nostocales or Stigonematales cyanobacterial orders.


Assuntos
Antifúngicos/isolamento & purificação , Aspergillus flavus/efeitos dos fármacos , Candida albicans/efeitos dos fármacos , Cianobactérias/química , Descoberta de Drogas , Anabaena/química , Anabaena/classificação , Anabaena/crescimento & desenvolvimento , Anabaena/isolamento & purificação , Antifúngicos/química , Antifúngicos/farmacologia , Aspergillus flavus/crescimento & desenvolvimento , Brasil , Candida albicans/crescimento & desenvolvimento , Cianobactérias/classificação , Cianobactérias/crescimento & desenvolvimento , Cianobactérias/isolamento & purificação , República Tcheca , Finlândia , Água Doce/microbiologia , Glicolipídeos/química , Glicolipídeos/isolamento & purificação , Glicolipídeos/farmacologia , Lipopeptídeos/química , Lipopeptídeos/isolamento & purificação , Lipopeptídeos/farmacologia , Estrutura Molecular , Tipagem Molecular , Nostoc/química , Nostoc/classificação , Nostoc/crescimento & desenvolvimento , Nostoc/isolamento & purificação , Peptídeos Cíclicos/química , Peptídeos Cíclicos/isolamento & purificação , Peptídeos Cíclicos/farmacologia , Filogenia , Piranos/química , Piranos/isolamento & purificação , Piranos/farmacologia , Águas Salinas , Especificidade da Espécie
11.
Proc Natl Acad Sci U S A ; 109(15): 5886-91, 2012 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-22451908

RESUMO

Lichens are symbiotic associations between fungi and photosynthetic algae or cyanobacteria. Microcystins are potent toxins that are responsible for the poisoning of both humans and animals. These toxins are mainly associated with aquatic cyanobacterial blooms, but here we show that the cyanobacterial symbionts of terrestrial lichens from all over the world commonly produce microcystins. We screened 803 lichen specimens from five different continents for cyanobacterial toxins by amplifying a part of the gene cluster encoding the enzyme complex responsible for microcystin production and detecting toxins directly from lichen thalli. We found either the biosynthetic genes for making microcystins or the toxin itself in 12% of all analyzed lichen specimens. A plethora of different microcystins was found with over 50 chemical variants, and many of the variants detected have only rarely been reported from free-living cyanobacteria. In addition, high amounts of nodularin, up to 60 µg g(-1), were detected from some lichen thalli. This microcystin analog and potent hepatotoxin has previously been known only from the aquatic bloom-forming genus Nodularia. Our results demonstrate that the production of cyanobacterial hepatotoxins in lichen symbiosis is a global phenomenon and occurs in many different lichen lineages. The very high genetic diversity of the mcyE gene and the chemical diversity of microcystins suggest that lichen symbioses may have been an important environment for diversification of these cyanobacteria.


Assuntos
Cianobactérias/fisiologia , Líquens/efeitos dos fármacos , Líquens/fisiologia , Fígado/efeitos dos fármacos , Fígado/patologia , Peptídeos/toxicidade , Simbiose/efeitos dos fármacos , Animais , Toxinas Bacterianas/toxicidade , Sequência de Bases , Teorema de Bayes , Cianobactérias/efeitos dos fármacos , Cianobactérias/genética , Toxinas de Cianobactérias , Genes Bacterianos/genética , Geografia , Humanos , Toxinas Marinhas/toxicidade , Microcistinas/toxicidade , Dados de Sequência Molecular , Peptídeos Cíclicos/toxicidade , Filogenia , Manejo de Espécimes
12.
Plant Cell Environ ; 37(6): 1371-81, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24895757

RESUMO

Screening of 55 different cyanobacterial strains revealed that an extract from Nostoc XPORK14A drastically modifies the amplitude and kinetics of chlorophyll a fluorescence induction of Synechocystis PCC6803 cells.After 2 d exposure to the Nostoc XPORK14A extract, Synechocystis PCC 6803 cells displayed reduced net photosynthetic activity and significantly modified electron transport properties of photosystem II under both light and dark conditions. However, the maximum oxidizable amount of P700 was not strongly affected. The extract also induced strong oxidative stress in Synechocystis PCC 6803 cells in both light and darkness. We identified the secondary metabolite of Nostoc XPORK14A causing these pronounced effects on Synechocystis cells. Mass spectrometry and nuclear magnetic resonance analyses revealed that this compound, designated as M22, has a non-peptide structure. We propose that M22 possesses a dualaction mechanism: firstly, by photogeneration of reactive oxygen species in the presence of light, which in turn affects the photosynthetic machinery of Synechocystis PCC 6803; and secondly, by altering the in vivo redox status of cells, possibly through inhibition of protein kinases.


Assuntos
Clorofila/metabolismo , Nostoc/química , Fotossíntese/efeitos dos fármacos , Synechocystis/fisiologia , Extratos Celulares/química , Extratos Celulares/farmacologia , Células Cultivadas , Clorofila A , Transporte de Elétrons/efeitos dos fármacos , Cinética , Ressonância Magnética Nuclear Biomolecular , Oceanos e Mares , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Synechocystis/crescimento & desenvolvimento
13.
J Nat Prod ; 77(8): 1784-90, 2014 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-25069058

RESUMO

Two new trypsin inhibitors, nostosin A (1) and B (2), were isolated from a hydrophilic extract of Nostoc sp. strain FSN, which was collected from a paddy field in the Golestan Province of Iran. Nostosins A (1) and B (2) are composed of three subunits, 2-hydroxy-4-(4-hydroxyphenyl)butanoic acid (Hhpba), L-Ile, and L-argininal (1) or argininol (2). Nostosins A (1) and B (2) exhibited IC50 values of 0.35 and 55 µM against porcine trypsin, respectively, suggesting that the argininal aldehyde group plays a crucial role in the efficient inhibition of trypsin. Molecular docking of nostosin A (1) (449 Da), leupeptin (426 Da, IC50 0.5 µM), and spumigin E (610 Da, IC50 < 0.1 µM) with trypsin suggested prominent binding similarity between nostosin A (1) and leupeptin but only partial binding similarity with spumigin E. The number of hydrogen bonds between ligands and trypsin increased according to the length and size of the ligand molecule, and the docking affinity values followed the measured IC50 values. Nostosin A (1) is the first highly potent three-subunit trypsin inhibitor with potency comparable to the known commercial trypsin inhibitor leupeptin. These findings expand the known diversity of short-chain linear peptide protease inhibitors produced by cyanobacteria.


Assuntos
Leupeptinas/isolamento & purificação , Leupeptinas/farmacologia , Nostoc/química , Oligopeptídeos/isolamento & purificação , Oligopeptídeos/farmacologia , Inibidores da Tripsina/isolamento & purificação , Inibidores da Tripsina/farmacologia , Concentração Inibidora 50 , Irã (Geográfico) , Leupeptinas/química , Estrutura Molecular , Oligopeptídeos/química , Inibidores da Tripsina/química
14.
Mar Drugs ; 12(4): 2036-53, 2014 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-24705501

RESUMO

In this study, we investigated forty cyanobacterial isolates from biofilms, gastropods, brackish water and symbiotic lichen habitats. Their aqueous and organic extracts were used to screen for apoptosis-inducing activity against acute myeloid leukemia cells. A total of 28 extracts showed cytotoxicity against rat acute myeloid leukemia (IPC-81) cells. The design of the screen made it possible to eliminate known toxins, such as microcystins and nodularin, or known metabolites with anti-leukemic activity, such as adenosine and its analogs. A cytotoxicity test on human embryonic kidney (HEK293T) fibroblasts indicated that 21 of the 28 extracts containing anti-acute myeloid leukemia (AML) activity showed selectivity in favor of leukemia cells. Extracts L26-O and L30-O were able to partly overcome the chemotherapy resistance induced by the oncogenic protein Bcl-2, whereas extract L1-O overcame protection from the deletion of the tumor suppressor protein p53. In conclusion, cyanobacteria are a prolific resource for anti-leukemia compounds that have potential for pharmaceutical applications. Based on the variety of cellular responses, we also conclude that the different anti-leukemic compounds in the cyanobacterial extracts target different elements of the death machinery of mammalian cells.


Assuntos
Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Cianobactérias/química , Leucemia Mieloide Aguda/tratamento farmacológico , Animais , Antineoplásicos/isolamento & purificação , Linhagem Celular Tumoral , Cianobactérias/isolamento & purificação , Resistencia a Medicamentos Antineoplásicos , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Células HEK293 , Humanos , Leucemia Mieloide Aguda/patologia , Ratos
15.
Toxicon ; 243: 107733, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38670499

RESUMO

Microcystins (MCs) are a family of chemically diverse toxins produced by numerous distantly related cyanobacteria. They are potent inhibitors of eukaryotic protein phosphatases 1 and 2A and are responsible for the toxicosis and death of wild and domestic animals around the world. Microcystins are synthesized on large enzyme complexes comprised of peptide synthetases, polyketide synthases, and additional modifying enzymes. Bioinformatic analysis identified the presence of an additional uncharacterized enzyme in the microcystin (mcy) biosynthetic gene cluster in Fischerella sp. PCC 9339, which we named McyK, that lacked a clearly defined role in the biosynthesis of microcystin. Further bioinformatic analysis suggested that McyK belongs to the inosamine-phosphate amidinotransferase family and could be involved in synthesizing homo amino acids. Quadrupole time-of-flight tandem mass spectrometry (Q-TOFMS/MS) analysis confirmed that Fischerella sp. PCC 9339 produces MC-Leucine2-Homoarginine4(MC-LHar) and [Aspartic acid3]MC-Leucine2-Homoarginine4 ([Asp3]MC-LHar) as the dominant chemical variants. We hypothesized that the McyK enzyme might be involved in the production of microcystin variants containing homoarginine (Har) in the strain. Heterologous expression of a codon-optimized mcyK gene in Escherichia coli confirmed that McyK is responsible for the synthesis of L-Har. These results confirm the production of MC-LHar, a novel microcystin chemical variant [Asp3]MC-LHar, and a new microcystin biosynthetic enzyme involved in supply of the rare homo-amino acid Har to the microcystin biosynthetic pathway in Fischerella sp. PCC 9339. This study provides new insights into the logic underpinning the biosynthesis of microcystin chemical variants and broadens our knowledge of structural diversity of the microcystin family of toxins.


Assuntos
Homoarginina , Microcistinas , Microcistinas/biossíntese , Microcistinas/metabolismo , Microcistinas/genética , Homoarginina/metabolismo , Vias Biossintéticas , Família Multigênica , Cianobactérias/metabolismo , Cianobactérias/genética , Espectrometria de Massas em Tandem
16.
BMC Evol Biol ; 13: 86, 2013 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-23601305

RESUMO

BACKGROUND: Many important toxins and antibiotics are produced by non-ribosomal biosynthetic pathways. Microcystins are a chemically diverse family of potent peptide toxins and the end-products of a hybrid NRPS and PKS secondary metabolic pathway. They are produced by a variety of cyanobacteria and are responsible for the poisoning of humans as well as the deaths of wild and domestic animals around the world. The chemical diversity of the microcystin family is attributed to a number of genetic events that have resulted in the diversification of the pathway for microcystin assembly. RESULTS: Here, we show that independent evolutionary events affecting the substrate specificity of the microcystin biosynthetic pathway have resulted in convergence on a rare [D-Leu(1)] microcystin-LR chemical variant. We detected this rare microcystin variant from strains of the distantly related genera Microcystis, Nostoc, and Phormidium. Phylogenetic analysis performed using sequences of the catalytic domains within the mcy gene cluster demonstrated a clear recombination pattern in the adenylation domain phylogenetic tree. We found evidence for conversion of the gene encoding the McyA(2) adenylation domain in strains of the genera Nostoc and Phormidium. However, point mutations affecting the substrate-binding sequence motifs of the McyA(2) adenylation domain were associated with the change in substrate specificity in two strains of Microcystis. In addition to the main [D-Leu(1)] microcystin-LR variant, these two strains produced a new microcystin that was identified as [Met(1)] microcystin-LR. CONCLUSIONS: Phylogenetic analysis demonstrated that both point mutations and gene conversion result in functional mcy gene clusters that produce the same rare [D-Leu(1)] variant of microcystin in strains of the genera Microcystis, Nostoc, and Phormidium. Engineering pathways to produce recombinant non-ribosomal peptides could provide new natural products or increase the activity of known compounds. Our results suggest that the replacement of entire adenylation domains could be a more successful strategy to obtain higher specificity in the modification of the non-ribosomal peptides than point mutations.


Assuntos
Evolução Biológica , Cianobactérias/classificação , Cianobactérias/genética , Microcistinas/genética , Biossíntese Peptídica , Monofosfato de Adenosina/metabolismo , Cianobactérias/metabolismo , Microcistinas/química , Filogenia , Especificidade por Substrato
17.
ACS Chem Biol ; 18(9): 1959-1967, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37603862

RESUMO

Mycosporine-like amino acids (MAAs) are small, colorless, and water-soluble secondary metabolites. They have high molar extinction coefficients and a unique UV radiation absorption mechanism that make them effective sunscreens. Here we report the discovery of two structurally distinct MAAs from the lichen symbiont strain Nostoc sp. UHCC 0926. We identified these MAAs as aplysiapalythine E (C23H38N2O15) and tricore B (C34H53N4O15) using a combination of high-resolution liquid chromatography-mass spectrometry (HR-LCMS) analysis and nuclear magnetic resonance (NMR) spectroscopy. We obtained a 8.3 Mb complete genome sequence of Nostoc sp. UHCC 0926 to gain insights into the genetic basis for the biosynthesis of these two structural distinct MAAs. We identified MAA biosynthetic genes encoded in three separate locations of the genome. The organization of biosynthetic enzymes in Nostoc sp. UHCC 0926 necessitates a branched biosynthetic pathway to produce two structurally distinct MAAs. We detected the presence of such discontiguous MAA biosynthetic gene clusters in 12% of the publicly available complete cyanobacterial genomes. Bioinformatic analysis of public MAA biosynthetic gene clusters suggests that they are subject to rapid evolutionary processes resulting in highly plastic biosynthetic pathways that are responsible for the chemical diversity in this family of microbial sunscreens.


Assuntos
Vias Biossintéticas , Protetores Solares , Aminoácidos , Evolução Biológica , Cromatografia Líquida
18.
Toxicon ; 232: 107205, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37406865

RESUMO

Toxic benthic mats of cyanobacteria are associated with water quality problems and animal poisonings around the world. A strain of the filamentous cyanobacterial genus Kamptonema was isolated from a water bloom in the Baltic Sea four decades ago and later shown to produce cylindrospermopsins. However, the exact habitat of this strain remains unclear and cylindrospermopsins have not yet been reported from water blooms in the Baltic Sea. Here, we report the isolation of Kamptonema sp. UHCC 0994 from a benthic microbial mat collected in shallow water on the coast of Helsinki. We obtained draft genome sequences for the Kamptonema spp. PCC 7926 and UHCC 0994 strains that were isolated from the Baltic Sea. These genomes were 90-96% similar to previously studied Kamptonema sp. PCC 6506 and Kamptonema formosum PCC 6407, which were isolated from benthic and North American freshwater environments, respectively. The genomes of all four Kamptonema strains encode complete cylindrospermopsin biosynthetic gene clusters. We detected the production of cylindrospermopsin and 7-epi-cylindrospermopsin in the four Kamptonema strains using high-resolution liquid chromatography mass spectrometry. The four strains encode genes for producing gas vesicles distributed in two to three different regions of their genomes. Kamptonema spp. UHCC 0994 and PCC 7926 have both retained the ability to regulate their buoyancy when grown in liquid culture. Together this suggests that these toxic cyanobacteria may exhibit a tychoplanktic lifestyle in the Baltic Sea. This study suggests that microbial mats containing cyanobacteria could be a source of environmental toxins in the Baltic Sea.


Assuntos
Alcaloides , Cianobactérias , Animais , Cianobactérias/química , Toxinas de Cianobactérias , Ecossistema
20.
Chem Commun (Camb) ; 58(86): 12054-12057, 2022 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36193595

RESUMO

Cyanobactins are linear and cyclic post-translationally modified peptides. Here we show that the prenyl-D-Arg-containing autumnalamide A is a member of the cyanobactin family. Biochemical assays demonstrate that the AutF prenyltransferase targets the guanidinium moiety in arginine and homoarginine and is a useful tool for biotechnological applications.


Assuntos
Vias Biossintéticas , Dimetilaliltranstransferase , Dimetilaliltranstransferase/química , Dimetilaliltranstransferase/metabolismo , Arginina/metabolismo , Homoarginina/metabolismo , Guanidina , Peptídeos Cíclicos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA