Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País/Região como assunto
Intervalo de ano de publicação
1.
Ecol Lett ; 27(8): e14491, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39132693

RESUMO

Animals interact with nutrient cycles by consuming and depositing nutrients, interactions studied separately in nutritional ecology and zoogeochemistry. Recent theoretical work bridges these disciplines, highlighting that animal-driven nutrient recycling could be crucial in helping animals meet their nutritional needs. When animals exhibit site fidelity, they consistently deposit nutrients, potentially improving vegetation quality. We investigated this potential feedback by analysing changes in forage nitrogen stocks following simulated caribou calving. We found that forage nitrogen stocks increased after 2 weeks and remained elevated after 1 year, a change due to increased forage quality, not quantity. We also developed a nutrient budget within calving grounds, demonstrating that natal fluid and calf carcasses contribute substantial nitrogen subsidies. We, thus, highlight a positive zoogeochemical feedback whereby nutrients deposited during calving become bioavailable during lactation and provide evidence that site fidelity creates a biogeochemical boomerang in which animals deposit nutrients that can be reused later.


Assuntos
Nitrogênio , Animais , Feminino , Nitrogênio/análise , Nitrogênio/metabolismo , Lactação , Cervos/fisiologia , Fenômenos Fisiológicos da Nutrição Animal
2.
Ecol Lett ; 20(12): 1495-1506, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29027338

RESUMO

Human activities are altering the fundamental geography of biogeochemicals. Yet we lack an understanding of how the spatial patterns in organismal stoichiometry affect biogeochemical processes and the tools to predict the impacts of global changes on biogeochemical processes. In this contribution we develop stoichiometric distribution models (StDMs), which allow us to map spatial structure in resource elemental composition across a landscape and evaluate spatial responses of consumers. We parameterise StDMs for a consumer-resource (moose-white birch) system and demonstrate that we can develop predictive models of resource stoichiometry across a landscape and that such models could improve our predictions of consumer space use. With results from our study system application, we argue that explicit consideration of the spatial patterns in organismal elemental composition may uncover emergent individual, population, community and ecosystem properties that are not revealed at the local extents routinely used in ecological stoichiometry. We discuss perspectives for further developments and application of StDMs to advance three emerging frameworks for spatial ecosystem ecology in an era of global change; meta-ecosystem theory, macroecological stoichiometry and remotely sensed biogeochemistry. Progress on these emerging frameworks will allow for the integration of ecological stoichiometry and individual space use and fitness.


Assuntos
Ecologia , Ecossistema , Humanos , Modelos Biológicos
3.
Curr Zool ; 67(1): 113-123, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33654495

RESUMO

Scale remains a foundational concept in ecology. Spatial scale, for instance, has become a central consideration in the way we understand landscape ecology and animal space use. Meanwhile, scale-dependent social processes can range from fine-scale interactions to co-occurrence and overlapping home ranges. Furthermore, sociality can vary within and across seasons. Multilayer networks promise the explicit integration of the social, spatial, and temporal contexts. Given the complex interplay of sociality and animal space use in heterogeneous landscapes, there remains an important gap in our understanding of the influence of scale on animal social networks. Using an empirical case study, we discuss ways of considering social, spatial, and temporal scale in the context of multilayer caribou social networks. Effective integration of social and spatial processes, including biologically meaningful scales, within the context of animal social networks is an emerging area of research. We incorporate perspectives that link the social environment to spatial processes across scales in a multilayer context.

4.
Prev Vet Med ; 108(2-3): 137-47, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-22940061

RESUMO

Transmission of bovine tuberculosis (Mycobacterium bovis) among wildlife and livestock has created important risks for conservation and agriculture. Management strategies aimed at controlling TB have typically been top-down, regionally focused, and government-led programs that were at best only partially successful. The purpose of this study was to quantify co-mingling of elk and white-tailed deer (WTD) with cattle at multiple spatial scales (i.e., the regional farm scale and winter cattle feeding area patch) in southwestern Manitoba, Canada, to assess the potential for bovine tuberculosis transmission and identify alternative management strategies. For each spatial scale we quantified use of cattle farms by elk and white-tailed deer. We mailed questionnaires to rural households and then conducted personal interviews with 86 cattle farmers to map the spatial distribution of their cattle winter feeding areas at a fine scale. We deployed Global Positioning System (GPS) collars on 48 wild elk and 16 wild white-tailed deer from 2003 to 2011. Elk were observed on farms by 66% of cattle producers, including 5% and 20% who observed direct and indirect contact, respectively, between elk and cattle. Cattle producers consistently (≈100%) observed white-tailed deer on their farms, including 11% and 47% whom observed direct and indirect contact, respectively, between white-tailed deer and cattle. A higher probability of white-tailed deer-cattle contact at the regional scale occurs on farms that (1) left crop residues specifically for wildlife, (2) had larger cattle herds, (3) used round bale feeders, and (4) were farther away from protected areas. None of the GPS-collared elk locations overlapped with cattle winter feeding areas. In contrast, 21% of GPS-collared white-tailed deer locations overlapped with winter cattle winter feeding areas (22% of these were from male WTD and 78% were from female WTD). White-tailed deer selected cattle winter feeding areas with higher (1) forage crop, (2) grassland/rangeland, and (3) forest cover around the cattle feeding area. Farmers overall expressed strongly negative attitudes toward eradicating the elk population or fencing the park to eradicate TB, but were generally supportive of less invasive and farm-based approaches. Our results suggested that management efforts to prevent TB transmission at the wildlife-agriculture interface can be effectively implemented using a 'bottom-up' approach that focuses on practical, farm-based mitigation strategies. This approach can be implemented by individual farm operators, is relatively low cost, and is generally well supported by farmers relative to other more extreme and controversial measures like wildlife eradication.


Assuntos
Criação de Animais Domésticos/métodos , Bovinos/fisiologia , Cervos/fisiologia , Comportamento Alimentar , Tuberculose Bovina/prevenção & controle , Tuberculose Bovina/transmissão , Animais , Meio Ambiente , Feminino , Sistemas de Informação Geográfica , Conhecimentos, Atitudes e Prática em Saúde , Masculino , Manitoba , Modelos Biológicos , Mycobacterium bovis , Especificidade da Espécie , Inquéritos e Questionários , Tuberculose Bovina/microbiologia , Tuberculose Bovina/psicologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA