RESUMO
Recognizing that enteric tuft cells can signal the presence of nematode parasites, we investigated whether tuft cells are required for the expulsion of the cestode, Hymenolepis diminuta, from the non-permissive mouse host, and in concomitant anti-helminthic responses. BALB/c and C57BL/6 mice infected with H. diminuta expelled the worms by 11 days post-infection (dpi) and displayed DCLK1+ (doublecortin-like kinase 1) tuft cell hyperplasia in the small intestine (not the colon) at 11 dpi. This tuft cell hyperplasia was dependent on IL-4Rα signalling and adaptive immunity, but not the microbiota. Expulsion of H. diminuta was slowed until at least 14 dpi, but not negated, in tuft cell-deficient Pou2f3-/- mice and was accompanied by delayed goblet cell hyperplasia and slowed small bowel transit. Worm antigen and mitogen evoked production of IL-4 and IL-10 by splenocytes from wild-type and Pou2f3-/- mice was not appreciably different, suggesting similar systemic immune reactivity to infection with H. diminuta. Wild-type and Pou2f3-/- mice infected with H. diminuta displayed partial protection against subsequent infection with the nematode Heligmosomoides bakeri. We speculate that, with respect to H. diminuta, enteric tuft cells are important for local immune events driving the rapidity of H. diminuta expulsion but are not critical in initiating or sustaining systemic Th2 responses that provide concomitant immunity against secondary infection with H. bakeri.
Assuntos
Himenolepíase , Hymenolepis diminuta , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Animais , Hymenolepis diminuta/imunologia , Camundongos , Himenolepíase/imunologia , Himenolepíase/parasitologia , Intestino Delgado/imunologia , Intestino Delgado/parasitologia , Intestino Delgado/patologia , Camundongos Knockout , Feminino , Hiperplasia/imunologia , Hiperplasia/parasitologia , Células em TufoRESUMO
The inflamed mucosa contains a complex assortment of proteases that may participate in wound healing or the development of inflammation-associated colon cancer. We sought to determine the role of protease-activated receptor 2 (PAR2) in epithelial wound healing in both untransformed and transformed colonic epithelial cells. Monolayers of primary epithelial cells derived from organoids cultivated from patient colonic biopsies and of the T84 colon cancer cell line were grown to confluence, wounded in the presence of a selective PAR2-activating peptide, and healing was visualized by live cell microscopy. Inhibitors of various signaling molecules were used to assess the relevant pathways responsible for wound healing. Activation of PAR2 induced an enhanced wound-healing response in T84 cells but not primary cells. The PAR2-enhanced wound-healing response was associated with the development of lamellipodia in cells at the wound edge, consistent with sheet migration. The response to PAR2 activation in T84 cells was completely dependent on Src kinase activity and partially dependent on Rac1 activity. The Src-associated signaling molecules, focal adhesion kinase, and epidermal growth factor receptor, which typically mediate wound-healing responses, were not involved in the PAR2 response. Experiments repeated in the presence of the inflammatory cytokines TNF and IFNγ revealed a synergistically enhanced PAR2 wound-healing response in T84s but not primary cells. The epithelial response to proteases may be different between primary and cancer cells and is accentuated in the presence of inflammatory cytokines. Our findings have implications for understanding epithelial restitution in the context of inflammatory bowel disease (IBD) and inflammation-associated colon cancer.NEW & NOTEWORTHY Protease-activated receptor 2 enhances wound healing in the T84 colon cancer cell line, but not in primary cells derived from patient biopsies, an effect that is synergistically enhanced in the presence of the inflammatory cytokines TNF and IFNγ.
Assuntos
Neoplasias do Colo , Receptor PAR-2 , Humanos , Linhagem Celular , Movimento Celular , Neoplasias do Colo/metabolismo , Citocinas/metabolismo , Células Epiteliais/metabolismo , Inflamação/metabolismo , Peptídeo Hidrolases/metabolismo , Peptídeo Hidrolases/farmacologia , Receptor PAR-2/metabolismoRESUMO
Gut physiology is the epicenter of a web of internal communication systems (i.e., neural, immune, hormonal) mediated by cell-cell contacts, soluble factors, and external influences, such as the microbiome, diet, and the physical environment. Together these provide the signals that shape enteric homeostasis and, when they go awry, lead to disease. Faced with the seemingly paradoxical tasks of nutrient uptake (digestion) and retarding pathogen invasion (host defense), the gut integrates interactions between a variety of cells and signaling molecules to keep the host nourished and protected from pathogens. When the system fails, the outcome can be acute or chronic disease, often labeled as "idiopathic" in nature (e.g., irritable bowel syndrome, inflammatory bowel disease). Here we underscore the importance of a holistic approach to gut physiology, placing an emphasis on intercellular connectedness, using enteric neuroimmunophysiology as the paradigm. The goal of this opinion piece is to acknowledge the pace of change brought to our field via single-cell and -omic methodologies and other techniques such as cell lineage tracing, transgenic animal models, methods for culturing patient tissue, and advanced imaging. We identify gaps in the field and hope to inspire and challenge colleagues to take up the mantle and advance awareness of the subtleties, intricacies, and nuances of intestinal physiology in health and disease by defining communication pathways between gut resident cells, those recruited from the circulation, and "external" influences such as the central nervous system and the gut microbiota.
Assuntos
Microbioma Gastrointestinal , Trato Gastrointestinal , Humanos , Animais , Trato Gastrointestinal/imunologia , Trato Gastrointestinal/fisiologia , Trato Gastrointestinal/microbiologia , Microbioma Gastrointestinal/fisiologia , Neuroimunomodulação/fisiologia , Sistema Nervoso Entérico/fisiologia , Sistema Nervoso Entérico/imunologiaRESUMO
The development of small molecule allosteric modulators acting at G protein-coupled receptors (GPCRs) is becoming increasingly attractive. Such compounds have advantages over traditional drugs acting at orthosteric sites on these receptors, in particular target specificity. However, the number and locations of druggable allosteric sites within most clinically relevant GPCRs are unknown. In the present study, we describe the development and application of a mixed-solvent molecular dynamics (MixMD)-based method for the identification of allosteric sites on GPCRs. The method employs small organic probes with druglike qualities to identify druggable hotspots in multiple replicate short-timescale simulations. As proof of principle, we first applied the method retrospectively to a test set of five GPCRs (cannabinoid receptor type 1, C-C chemokine receptor type 2, M2 muscarinic receptor, P2Y purinoceptor 1, and protease-activated receptor 2) with known allosteric sites in diverse locations. This resulted in the identification of the known allosteric sites on these receptors. We then applied the method to the µ-opioid receptor. Several allosteric modulators for this receptor are known, although the binding sites for these modulators are not known. The MixMD-based method revealed several potential allosteric sites on the mu-opioid receptor. Implementation of the MixMD-based method should aid future efforts in the structure-based drug design of drugs targeting allosteric sites on GPCRs. SIGNIFICANCE STATEMENT: Allosteric modulation of G protein-coupled receptors (GPCRs) has the potential to provide more selective drugs. However, there are limited structures of GPCRs bound to allosteric modulators, and obtaining such structures is problematic. Current computational methods utilize static structures and therefore may not identify hidden or cryptic sites. Here we describe the use of small organic probes and molecular dynamics to identify druggable allosteric hotspots on GPCRs. The results reinforce the importance of protein dynamics in allosteric site identification.
Assuntos
Simulação de Dinâmica Molecular , Receptores Acoplados a Proteínas G , Sítio Alostérico , Solventes/química , Regulação Alostérica , Estudos Retrospectivos , Receptores Acoplados a Proteínas G/metabolismo , Sítios de Ligação , Receptor Muscarínico M2 , Receptores Opioides , LigantesRESUMO
The enteric nervous system (ENS) regulates the motor, secretory and defensive functions of the gastrointestinal tract. Enteric neurons integrate mechanical and chemical inputs from the gut lumen to generate complex motor outputs. How intact enteric neural circuits respond to changes in the gut lumen is not well understood. We recorded intracellular calcium in live-cell confocal recordings in neurons from intact segments of mouse intestine in order to investigate neuronal response to luminal mechanical and chemical stimuli. Wnt1-, ChAT- and Calb1-GCaMP6 mice were used to record neurons from the jejunum and colon. We measured neuronal calcium response to KCl (75 mM), veratridine (10 µM), 1,1-dimethyl-4-phenylpiperazinium (DMPP; 100 µM) or luminal nutrients (Ensure®), in the presence or absence of intraluminal distension. In the jejunum and colon, distension generated by the presence of luminal content (chyme and faecal pellets, respectively) renders the underlying enteric circuit unresponsive to depolarizing stimuli. In the distal colon, high levels of distension inhibit neuronal response to KCl, while intermediate levels of distension reorganize Ca2+ response in circumferentially propagating slow waves. Mechanosensitive channel inhibition suppresses distension-induced Ca2+ elevations, and calcium-activated potassium channel inhibition restores neuronal response to KCl, but not DMPP in the distended colon. In the jejunum, distension prevents a previously unknown tetrodotoxin-resistant neuronal response to luminal nutrient stimulation. Our results demonstrate that intestinal distension regulates the excitability of ENS circuits via mechanosensitive channels. Physiological levels of distension locally silence or synchronize neurons, dynamically regulating the excitability of enteric neural circuits based on the content of the intestinal lumen. KEY POINTS: How the enteric nervous system of the gastrointestinal tract responds to luminal distension remains to be fully elucidated. Here it is shown that intestinal distension modifies intracellular calcium levels in the underlying enteric neuronal network, locally and reversibly silencing neurons in the distended regions. In the distal colon, luminal distension is integrated by specific mechanosensitive channels and coordinates the dynamics of neuronal activation within the enteric network. In the jejunum, distension suppresses the neuronal calcium responses induced by luminal nutrients. Physiological levels of distension dynamically regulate the excitability of enteric neuronal circuits.
Assuntos
Cálcio , Sistema Nervoso Entérico , Camundongos , Animais , Sistema Nervoso Entérico/fisiologia , Neurônios/fisiologia , Intestino Delgado , Jejuno , Colo/fisiologia , Plexo MientéricoRESUMO
Klebsiella pneumoniae carbapenemase-2 (KPC-2) presents a clinical threat as this ß-lactamase confers resistance to carbapenems. Recent variants of KPC-2 in clinical isolates contribute to concerning resistance phenotypes. Klebsiella pneumoniae expressing KPC-2 D179Y acquired resistance to the ceftazidime/avibactam combination affecting both the ß-lactam and the ß-lactamase inhibitor yet has lowered minimum inhibitory concentrations for all other ß-lactams tested. Furthermore, Klebsiella pneumoniae expressing the KPC-2 D179N variant also manifested resistance to ceftazidime/avibactam yet retained its ability to confer resistance to carbapenems although significantly reduced. This structural study focuses on the inhibition of KPC-2 D179N by avibactam and relebactam and expands our previous analysis that examined ceftazidime resistance conferred by D179N and D179Y variants. Crystal structures of KPC-2 D179N soaked with avibactam and co-crystallized with relebactam were determined. The complex with avibactam reveals avibactam making several hydrogen bonds, including with the deacylation water held in place by Ω loop. These results could explain why the KPC-2 D179Y variant, which has a disordered Ω loop, has a decreased affinity for avibactam. The relebactam KPC-2 D179N complex revealed a new orientation of the diazabicyclooctane (DBO) intermediate with the scaffold piperidine ring rotated ~150° from the standard DBO orientation. The density shows relebactam to be desulfated and present as an imine-hydrolysis intermediate not previously observed. The tetrahedral imine moiety of relebactam interacts with the deacylation water. The rotated relebactam orientation and deacylation water interaction could potentially contribute to KPC-mediated DBO fragmentation. These results elucidate important differences that could aid in the design of novel ß-lactamase inhibitors.
Assuntos
Antibacterianos , Ceftazidima , Ceftazidima/farmacologia , Antibacterianos/farmacologia , Klebsiella pneumoniae/genética , Água , beta-Lactamases/genética , beta-Lactamases/química , Proteínas de Bactérias/genética , Compostos Azabicíclicos/farmacologia , Compostos Azabicíclicos/química , Inibidores de beta-Lactamases/farmacologia , Carbapenêmicos , Combinação de Medicamentos , Iminas , Testes de Sensibilidade MicrobianaRESUMO
Klebsiella pneumoniae carbapenemases (KPC-2 and KPC-3) present a global clinical threat, as these ß-lactamases confer resistance to carbapenems and oxyimino-cephalosporins. Recent clinically identified KPC variants with substitutions at Ambler position D179, located in the Ω loop, are resistant to the ß-lactam/ß-lactamase inhibitor combination ceftazidime-avibactam, but susceptible to meropenem-vaborbactam. To gain insights into ceftazidime-avibactam resistance conferred by D179N/Y variants of KPC-2, crystal structures of these variants were determined. The D179N KPC-2 structure revealed that the change of the carboxyl to an amide moiety at position 179 disrupted the salt bridge with R164 present in wild-type KPC-2. Additional interactions were disrupted in the Ω loop, causing a decrease in the melting temperature. Shifts originating from N179 were also transmitted toward the active site, including â¼1-Å shifts of the deacylation water and interacting residue N170. The structure of the D179Y KPC-2 ß-lactamase revealed more drastic changes, as this variant exhibited disorder of the Ω loop, with other flanking regions also being disordered. We postulate that the KPC-2 variants can accommodate ceftazidime because the Ω loop is displaced in D179Y or can be more readily displaced in D179N KPC-2. To understand why the ß-lactamase inhibitor vaborbactam is less affected by the D179 variants than avibactam, we determined the crystal structure of D179N KPC-2 in complex with vaborbactam, which revealed wild-type KPC-2-like vaborbactam-active site interactions. Overall, the structural results regarding KPC-2 D179 variants revealed various degrees of destabilization of the Ω loop that contribute to ceftazidime-avibactam resistance, possible substrate-assisted catalysis of ceftazidime, and meropenem and meropenem-vaborbactam susceptibility.
Assuntos
Ceftazidima , Inibidores de beta-Lactamases , Antibacterianos/farmacologia , Compostos Azabicíclicos/farmacologia , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Ceftazidima/farmacologia , Combinação de Medicamentos , Klebsiella pneumoniae/genética , Meropeném/farmacologia , Testes de Sensibilidade Microbiana , Inibidores de beta-Lactamases/farmacologia , beta-Lactamases/genéticaRESUMO
Mucosal and histological healing have become the gold standards for assessing the efficacy of therapy in patients living with inflammatory bowel diseases (IBD). Despite these being the accepted goals in therapy, the mechanisms that underlie the healing of the mucosa after an inflammatory insult are not well understood, and many patients fail to meet this therapeutic endpoint. Here we review the emerging evidence that mediators (e.g., prostaglandins, cytokines, proteases, reactive oxygen, and nitrogen species) and innate immune cells (e.g., neutrophils and monocytes/macrophages), that are involved in the initiation of the inflammatory response, are also key players in the mechanisms underlying mucosal healing to resolve chronic inflammation in the colon. The dual function mediators comprise an inflammation/repair program that returns damaged tissue to homeostasis. Understanding details of the dual mechanisms of these mediators and cells may provide the basis for the development of drugs that can help to stimulate epithelial repair in patients affected by IBD.
Assuntos
Células Epiteliais/metabolismo , Inflamação/metabolismo , Doenças Inflamatórias Intestinais/metabolismo , Intestinos/metabolismo , Colo/patologia , Citocinas/imunologia , Células Epiteliais/patologia , Homeostase/fisiologia , Humanos , Inflamação/patologia , Mediadores da Inflamação/metabolismo , Doenças Inflamatórias Intestinais/imunologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Intestinos/patologiaRESUMO
The endocannabinoid system of the gastrointestinal tract is involved in the control of intestinal barrier function. Whether the cannabinoid 1 (CB1) receptor is expressed on the intestinal epithelium and acutely regulates barrier function has not been determined. Here, we tested the hypothesis that ligands of the CB1 receptor acutely modulate small intestinal permeability and that this is associated with altered distribution of tight junction proteins. We examined the acute effects of CB1 receptor ligands on small intestinal permeability both in chow-fed and 2-wk high-fat diet (HFD)-fed mice using Ussing chambers. We assessed the distribution of CB1 receptor and tight junction proteins using immunofluorescence and the expression of CB1 receptor using PCR. A low level of CB1 expression was found on the intestinal epithelium. CB1 receptor was highly expressed on enteric nerves in the lamina propria. Neither the CB1/CB2 agonist CP55,940 nor the CB1 neutral antagonist AM6545 altered the flux of 4kDa FITC dextran (FD4) across the jejunum or ileum of chow-fed mice. Remarkably, both CP55,940 and AM6545 reduced FD4 flux across the jejunum and ileum in HFD-fed mice that have elevated baseline intestinal permeability. These effects were absent in CB1 knockout mice. CP55,940 reduced the expression of claudin-2, whereas AM6545 had little effect on claudin-2 expression. Neither ligand altered the expression of ZO-1. Our data suggest that CB1 receptor on the intestinal epithelium regulates tight junction protein expression and restores barrier function when it is increased following exposure to a HFD for 2 wk.NEW & NOTEWORTHY The endocannabinoid system of the gastrointestinal tract regulates homeostasis by acting as brake on motility and secretion. Here we show that when exposed to a high fat diet, intestinal permeability is increased and activation of the CB1 receptor on the intestinal epithelium restores barrier function. This work further highlights the role of the endocannabinoid system in regulating intestinal homeostasis when it is perturbed.
Assuntos
Dieta Hiperlipídica , Mucosa Intestinal , Receptor CB1 de Canabinoide , Animais , Claudina-2/metabolismo , Dieta Hiperlipídica/efeitos adversos , Endocanabinoides/fisiologia , Mucosa Intestinal/fisiologia , Camundongos , Permeabilidade , Receptor CB1 de Canabinoide/fisiologiaRESUMO
Molnupiravir is an orally active nucleoside analog antiviral drug that recently was approved by the U.S. FDA for emergency treatment of adult patients infected with the SARS-CoV-2 (COVID-19) virus and at risk for severe progression. The active form of the drug, N-hydroxycytidine (NHC) triphosphate competes for incorporation by RNA-dependent RNA-polymerase (RdRp) into the replicating viral genome resulting in mutations and arrest of the replicating virus. Historically, some nucleoside analog antiviral drugs have been found to lack specificity for the virus and also inhibit replication and/or expression of the mitochondrial genome. The objective of the present study was to test whether molnupiravir and/or NHC also target mitochondrial DNA polymerase gamma (PolG) or RNA polymerase (POLRMT) activity to inhibit the replication and/or expression of the mitochondrial genome leading to impaired mitochondrial function. Human-derived HepG2 cells were exposed for 48 h in culture to increasing concentrations of either molnupiravir or NHC after which cytotoxicity, mtDNA copy number and mitochondrial gene expression were determined. The phenotypic endpoint, mitochondrial respiration, was measured with the Seahorse® XF96 Extracellular Flux Analyzer. Both molnupiravir and NHC were cytotoxic at concentrations of ≥10 µM. However, at non-cytotoxic concentrations, neither significantly altered mitochondrial gene dose or transcription, or mitochondrial respiration. From this we conclude that mitochondrial toxicity is not a primary off target in the mechanism of cytotoxicity for either molnupiravir or its active metabolite NHC in the HepG2 cell line.
Assuntos
Tratamento Farmacológico da COVID-19 , Nucleosídeos , Antivirais/toxicidade , Citidina/análogos & derivados , Humanos , Hidroxilaminas , Mitocôndrias/metabolismo , RNA , SARS-CoV-2RESUMO
In this study, we target the main protease (Mpro) of the SARS-CoV-2 virus as it is a crucial enzyme for viral replication. Herein, we report three plausible allosteric sites on Mpro that can expand structure-based drug discovery efforts for new Mpro inhibitors. To find these sites, we used mixed-solvent molecular dynamics (MixMD) simulations, an efficient computational protocol that finds binding hotspots through mapping the surface of unbound proteins with 5% cosolvents in water. We have used normal mode analysis to support our claim of allosteric control for these sites. Further, we have performed virtual screening against the sites with 361 hits from Mpro screenings available through the National Center for Advancing Translational Sciences (NCATS). We have identified the NCATS inhibitors that bind to the remote sites better than the active site of Mpro, and we propose these molecules may be allosteric regulators of the system. After identifying our sites, new X-ray crystal structures were released that show fragment molecules in the sites we found, supporting the notion that these sites are accurate and druggable.
Assuntos
COVID-19 , SARS-CoV-2 , Sítio Alostérico , Antivirais , Proteases 3C de Coronavírus , Humanos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Inibidores de Proteases/farmacologiaRESUMO
Regulator of G protein signaling 4 (RGS4) is an intracellular protein that binds to the Gα subunit ofheterotrimeric G proteins and aids in terminating G protein coupled receptor signaling. RGS4 has been implicated in pain, schizophrenia, and the control of cardiac contractility. Inhibitors of RGS4 have been developed but bind covalently to cysteine residues on the protein. Therefore, we sought to identify alternative druggable sites on RGS4 using mixed-solvent molecular dynamics simulations, which employ low concentrations of organic probes to identify druggable hotspots on the protein. Pseudo-ligands were placed in consensus hotspots, and perturbation with normal mode analysis led to the identification and characterization of a putative allosteric site, which would be invaluable for structure-based drug design of non-covalent, small molecule inhibitors. Future studies on the mechanism of this allostery will aid in the development of novel therapeutics targeting RGS4.
Assuntos
Sítio Alostérico , Modelos Químicos , Simulação de Dinâmica Molecular , Proteínas RGS/química , Calmodulina/metabolismo , Sistemas de Liberação de Medicamentos , Desenho de Fármacos , Fosfatidilinositóis/metabolismoRESUMO
Remdesivir is one of a few antiviral drugs approved for treating severe cases of coronavirus 2 (SARS-CoV-2) infection in hospitalized patients. The prodrug is a nucleoside analog that interferes with viral replication by inhibiting viral RNA-dependent RNA polymerase. The drug has also been shown to be a weak inhibitor of human mitochondrial RNA polymerase, leaving open the possibility of mitochondrial off-targets and toxicity. The investigation was designed to explore whether remdesivir causes mitochondrial toxicity, using both genomic and functional parameters in the assessment. Human-derived HepG2 liver cells were exposed for up to 48 h in culture to increasing concentrations of remdesivir. At sub-cytotoxic concentrations (<1 µM), the drug failed to alter either the number of copies or the expression of the mitochondrial genome. mtDNA copy number was unaffected as was the relative rates of expression of mtDNA-encoded and nuclear encoded subunits of complexes I and IV of the mitochondrial respiratory chain. Consistent with this is the observation that remdesivir was without effect on mitochondrial respiration, including basal respiration, proton leak, maximum uncoupled respiration, spare respiratory capacity or coupling efficiency. We conclude that although remdesivir has weak inhibitory activity towards mitochondrial RNA polymerase, mitochondria are not primary off-targets for the mechanism of cytotoxicity of the drug.
Assuntos
Monofosfato de Adenosina/análogos & derivados , Alanina/análogos & derivados , Antivirais/uso terapêutico , Tratamento Farmacológico da COVID-19 , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Monofosfato de Adenosina/farmacologia , Monofosfato de Adenosina/uso terapêutico , Alanina/farmacologia , Alanina/uso terapêutico , Antivirais/farmacologia , COVID-19/metabolismo , DNA Mitocondrial/antagonistas & inibidores , DNA Mitocondrial/metabolismo , RNA Polimerases Dirigidas por DNA/antagonistas & inibidores , RNA Polimerases Dirigidas por DNA/metabolismo , Relação Dose-Resposta a Droga , Células Hep G2 , Humanos , RNA Mensageiro/antagonistas & inibidores , RNA Mensageiro/metabolismoRESUMO
The small intestine regulates barrier function to absorb nutrients while avoiding the entry of potentially harmful substances or bacteria. Barrier function is dynamically regulated in part by the enteric nervous system (ENS). The role of the ENS in regulating barrier function in response to luminal nutrients is not well understood. We hypothesize that the ENS regulates intestinal permeability and ion flux in the small intestine in response to luminal nutrients. Segments of jejunum and ileum from mice were mounted in Ussing chambers. Transepithelial electrical resistance (TER), short-circuit current (Isc), and permeability to 4-kDa FITC-dextran (FD4) were recorded after mucosal stimulation with either glucose, fructose, glutamine (10 mM), or 5% Intralipid. Mucosal lipopolysaccharide (1 mg/mL) was also studied. Enteric neurons were inhibited with tetrodotoxin (TTX; 0.5 µM) or activated with veratridine (10 µM). Enteric glia were inhibited with the connexin-43 blocker Gap26 (20 µM). Glucose, glutamine, Intralipid, and veratridine acutely modified Isc in the jejunum and ileum, but the effect of nutrients on Isc was insensitive to TTX. TTX, Gap26, and veratridine treatment did not affect baseline TER or permeability. Intralipid acutely decreased permeability to FD4, while LPS increased it. TTX pretreatment abolished the effect of Intralipid and exacerbated the LPS-induced increase in permeability. Luminal nutrients and enteric nerve activity both affect ion flux in the mouse small intestine acutely but independently of each other. Neither neuronal nor glial activity is required for the maintenance of baseline intestinal permeability; however, neuronal activity is essential for the acute regulation of intestinal permeability in response to luminal lipids and lipopolysaccharide.NEW & NOTEWORTHY Luminal nutrients and enteric nerve activity both affect ion transport in the mouse small intestine acutely, but independently of each other. Activation or inhibition of the enteric neurons does not affect intestinal permeability, but enteric neural activity is essential for the acute regulation of intestinal permeability in response to luminal lipids and lipopolysaccharide. The enteric nervous system regulates epithelial homeostasis in the small intestine in a time-dependent, region- and stimulus-specific manner.
Assuntos
Sistema Nervoso Entérico/fisiologia , Absorção Intestinal/fisiologia , Intestino Delgado/metabolismo , Transporte de Íons/fisiologia , Nutrientes , Animais , Impedância Elétrica , Sistema Nervoso Entérico/metabolismo , Íleo/metabolismo , Técnicas In Vitro , Absorção Intestinal/efeitos dos fármacos , Intestino Delgado/efeitos dos fármacos , Transporte de Íons/efeitos dos fármacos , Jejuno/metabolismo , Lipídeos/farmacologia , Lipopolissacarídeos/farmacologia , Masculino , Camundongos , Neurônios/metabolismo , Neurônios/fisiologiaRESUMO
MOTIVATION: Accurate prediction and interpretation of ligand bioactivities are essential for virtual screening and drug discovery. Unfortunately, many important drug targets lack experimental data about the ligand bioactivities; this is particularly true for G protein-coupled receptors (GPCRs), which account for the targets of about a third of drugs currently on the market. Computational approaches with the potential of precise assessment of ligand bioactivities and determination of key substructural features which determine ligand bioactivities are needed to address this issue. RESULTS: A new method, SED, was proposed to predict ligand bioactivities and to recognize key substructures associated with GPCRs through the coupling of screening for Lasso of long extended-connectivity fingerprints (ECFPs) with deep neural network training. The SED pipeline contains three successive steps: (i) representation of long ECFPs for ligand molecules, (ii) feature selection by screening for Lasso of ECFPs and (iii) bioactivity prediction through a deep neural network regression model. The method was examined on a set of 16 representative GPCRs that cover most subfamilies of human GPCRs, where each has 300-5000 ligand associations. The results show that SED achieves excellent performance in modelling ligand bioactivities, especially for those in the GPCR datasets without sufficient ligand associations, where SED improved the baseline predictors by 12% in correlation coefficient (r2) and 19% in root mean square error. Detail data analyses suggest that the major advantage of SED lies on its ability to detect substructures from long ECFPs which significantly improves the predictive performance. AVAILABILITY AND IMPLEMENTATION: The source code and datasets of SED are freely available at https://zhanglab.ccmb.med.umich.edu/SED/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Assuntos
Receptores Acoplados a Proteínas G/metabolismo , Algoritmos , Humanos , Ligantes , Redes Neurais de Computação , SoftwareRESUMO
G protein-coupled receptors (GPCRs) are one of the most important drug targets, accounting for â¼34% of drugs on the market. For drug discovery, accurate modeling and explanation of bioactivities of ligands is critical for the screening and optimization of hit compounds. Homologous GPCRs are more likely to interact with chemically similar ligands, and they tend to share common binding modes with ligand molecules. The inclusion of homologous GPCRs in learning bioactivities of ligands potentially enhances the accuracy and interpretability of models due to utilizing increased training sample size and the existence of common ligand substructures that control bioactivities. Accurate modeling and interpretation of bioactivities of ligands by combining homologous GPCRs can be formulated as multitask learning with joint feature learning problem and naturally matched with the group lasso learning algorithm. Thus, we proposed a multitask regression learning with group lasso (MTR-GL) implemented by l2,1-norm regularization to model bioactivities of ligand molecules and then tested the algorithm on a series of thirty-five representative GPCRs datasets that cover nine subfamilies of human GPCRs. The results show that MTR-GL is overall superior to single-task learning methods and classic multitask learning with joint feature learning methods. Moreover, MTR-GL achieves better performance than state-of-the-art deep multitask learning based methods of predicting ligand bioactivities on most datasets (31/35), where MTR-GL obtained an average improvement of 38% on correlation coefficient (r2) and 29% on root-mean-square error over the DeepNeuralNet-QSAR predictors.
Assuntos
Algoritmos , Receptores Acoplados a Proteínas G , Descoberta de Drogas , Proteínas de Ligação ao GTP , Humanos , Ligantes , Receptores Acoplados a Proteínas G/metabolismoRESUMO
The gut microbiome contributes to inflammatory bowel disease (IBD), in which bacteria can be present within the epithelium. Epithelial barrier function is decreased in IBD, and dysfunctional epithelial mitochondria and endoplasmic reticulum (ER) stress have been individually associated with IBD. We therefore hypothesized that the combination of ER and mitochondrial stresses significantly disrupt epithelial barrier function. Here, we treated human colonic biopsies, epithelial colonoids, and epithelial cells with an uncoupler of oxidative phosphorylation, dinitrophenol (DNP), with or without the ER stressor tunicamycin and assessed epithelial barrier function by monitoring internalization and translocation of commensal bacteria. We also examined barrier function and colitis in mice exposed to dextran sodium sulfate (DSS) or DNP and co-treated with DAPK6, an inhibitor of death-associated protein kinase 1 (DAPK1). Contrary to our hypothesis, induction of ER stress (i.e. the unfolded protein response) protected against decreased barrier function caused by the disruption of mitochondrial function. ER stress did not prevent DNP-driven uptake of bacteria; rather, specific mobilization of the ATF6 arm of ER stress and recruitment of DAPK1 resulted in enhanced autophagic killing (xenophagy) of bacteria. Of note, epithelia with a Crohn's disease-susceptibility mutation in the autophagy gene ATG16L1 exhibited less xenophagy. Systemic delivery of the DAPK1 inhibitor DAPK6 increased bacterial translocation in DSS- or DNP-treated mice. We conclude that promoting ER stress-ATF6-DAPK1 signaling in transporting enterocytes counters the transcellular passage of bacteria evoked by dysfunctional mitochondria, thereby reducing the potential for metabolic stress to reactivate or perpetuate inflammation.
Assuntos
Proteínas Quinases Associadas com Morte Celular/metabolismo , Estresse do Retículo Endoplasmático , Mitocôndrias/metabolismo , Fator 6 Ativador da Transcrição/metabolismo , Idoso , Animais , Linhagem Celular Tumoral , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Epitélio/efeitos dos fármacos , Epitélio/metabolismo , Escherichia coli/efeitos dos fármacos , Escherichia coli/fisiologia , Feminino , Humanos , Masculino , Camundongos , Mitocôndrias/efeitos dos fármacos , Fosforilação Oxidativa/efeitos dos fármacos , Permeabilidade , Tunicamicina/farmacologiaRESUMO
Motivation: Precise assessment of ligand bioactivities (including IC50, EC50, Ki, Kd, etc.) is essential for virtual screening and lead compound identification. However, not all ligands have experimentally determined activities. In particular, many G protein-coupled receptors (GPCRs), which are the largest integral membrane protein family and represent targets of nearly 40% drugs on the market, lack published experimental data about ligand interactions. Computational methods with the ability to accurately predict the bioactivity of ligands can help efficiently address this problem. Results: We proposed a new method, WDL-RF, using weighted deep learning and random forest, to model the bioactivity of GPCR-associated ligand molecules. The pipeline of our algorithm consists of two consecutive stages: (i) molecular fingerprint generation through a new weighted deep learning method, and (ii) bioactivity calculations with a random forest model; where one uniqueness of the approach is that the model allows end-to-end learning of prediction pipelines with input ligands being of arbitrary size. The method was tested on a set of twenty-six non-redundant GPCRs that have a high number of active ligands, each with 200-4000 ligand associations. The results from our benchmark show that WDL-RF can generate bioactivity predictions with an average root-mean square error 1.33 and correlation coefficient (r2) 0.80 compared to the experimental measurements, which are significantly more accurate than the control predictors with different molecular fingerprints and descriptors. In particular, data-driven molecular fingerprint features, as extracted from the weighted deep learning models, can help solve deficiencies stemming from the use of traditional hand-crafted features and significantly increase the efficiency of short molecular fingerprints in virtual screening. Availability and implementation: The WDL-RF web server, as well as source codes and datasets of WDL-RF, is freely available at https://zhanglab.ccmb.med.umich.edu/WDL-RF/ for academic purposes. Supplementary information: Supplementary data are available at Bioinformatics online.
Assuntos
Biologia Computacional/métodos , Aprendizado Profundo , Ligantes , Receptores Acoplados a Proteínas G/metabolismo , Animais , Descoberta de Drogas/métodos , Avaliação Pré-Clínica de Medicamentos/métodos , HumanosRESUMO
OBJECTIVE: Hypertensive disorders affect 3-10% of pregnancies. Delayed delivery carries maternal risks, while early delivery increases fetal risk, so appropriate timing is important. The aim of this study was to compare immediate delivery with expectant management for prevention of adverse maternal and neonatal outcomes in women with hypertensive disease in pregnancy. METHODS: CENTRAL, PubMed, MEDLINE and ClinicalTrials.gov were searched for randomized controlled trials comparing immediate delivery to expectant management in women presenting with gestational hypertension or pre-eclampsia without severe features from 34 weeks of gestation. The primary neonatal outcome was respiratory distress syndrome (RDS) and the primary maternal outcome was a composite of HELLP syndrome and eclampsia. The PRISMA-IPD guideline was followed and a two-stage meta-analysis approach was used. Relative risks (RR) and numbers needed to treat or harm (NNT/NNH) with 95% CI were calculated to evaluate the effect of the intervention. RESULTS: Main outcomes were available for 1724 eligible women. Compared with expectant management, immediate delivery reduced the composite risk of HELLP syndrome and eclampsia in all women (0.8% vs 2.8%; RR, 0.33 (95% CI, 0.15-0.73); I2 = 0%; NNT, 51 (95% CI, 31.1-139.3)) as well as in the pre-eclampsia subgroup (1.1% vs 3.5%; RR, 0.39 (95% CI, 0.15-0.98); I2 = 0%). Immediate delivery increased RDS risk (3.4% vs 1.6%; RR, 1.94 (95% CI 1.05-3.6); I2 = 24%; NNH, 58 (95% CI, 31.1-363.1)), but depended upon gestational age. Immediate delivery in the 35th week of gestation increased RDS risk (5.1% vs 0.6%; RR, 5.5 (95% CI, 1.0-29.6); I2 = 0%), but immediate delivery in the 36th week did not (1.5% vs 0.4%; RR, 3.4 (95% CI, 0.4-30.3); I2 not applicable). CONCLUSION: In women with hypertension in pregnancy, immediate delivery reduces the risk of maternal complications, whilst the effect on the neonate depends on gestational age. Specifically, women with a-priori higher risk of progression to HELLP, such as those already presenting with pre-eclampsia instead of gestational hypertension, were shown to benefit from earlier delivery. © 2019 The Authors. Ultrasound in Obstetrics & Gynecology published by John Wiley & Sons Ltd on behalf of the International Society of Ultrasound in Obstetrics and Gynecology.
Assuntos
Eclampsia/epidemiologia , Síndrome HELLP/epidemiologia , Pré-Eclâmpsia/epidemiologia , Resultado da Gravidez/epidemiologia , Conduta Expectante , Adulto , Cesárea/estatística & dados numéricos , Eclampsia/prevenção & controle , Feminino , Idade Gestacional , Síndrome HELLP/prevenção & controle , Humanos , Recém-Nascido , Pré-Eclâmpsia/diagnóstico , Gravidez , Nascimento Prematuro , Ensaios Clínicos Controlados Aleatórios como Assunto , Síndrome do Desconforto Respiratório do Recém-Nascido/epidemiologia , Síndrome do Desconforto Respiratório do Recém-Nascido/etiologia , Fatores de RiscoRESUMO
The mechanisms of epithelial wound healing are not completely understood, especially in the context of proteases and their receptors. It was recently shown that activation of protease-activated receptor-2 (PAR2) on intestinal epithelial cells induced the expression of cyclooxygenase-2 (COX-2), which has protective functions in the gastrointestinal tract. It was hypothesized that PAR2-induced COX-2 could enhance wound healing in intestinal epithelial cells. Caco2 cells were used to model epithelial wound healing of circular wounds. Cellular proliferation was studied with a 5-ethynyl-2'-deoxyuridine assay, and migration was studied during wound healing in the absence of proliferation. Immunofluorescence was used to visualize E-cadherin and F-actin, and the cellular transcription profile during wound healing and PAR2 activation was explored with RNA sequencing. PAR2 activation inhibited Caco2 wound healing by reducing cell migration, independently of COX-2 activity. Interestingly, even though migration was reduced, proliferation was increased. When the actin dynamics and cell-cell junctions were investigated, PAR2 activation was found to induce actin cabling and prevent the internalization of E-cadherin. To further investigate the effect of PAR2 on transcriptionally dependent wound healing, RNA sequencing was performed. This analysis revealed that PAR2 activation, in the absence of wounding, induced a similar transcriptional profile compared with wounding alone. These findings represent a novel effect of PAR2 activation on the mechanisms of epithelial cell wound healing that could influence the resolution of intestinal inflammation.