Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
1.
Int J Mol Sci ; 24(2)2023 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-36674695

RESUMO

Colorectal cancer (CRC) is the third most prevalent and second deadliest cancer worldwide. In addition, metastasis directly causes up to 90% of all CRC deaths, highlighting the metastatic burden of the disease. Biomarkers such as S100A4 and MACC1 aid in identifying patients with a high risk of metastasis formation. High expression of S100A4 or MACC1 and to a greater extent the combination of both biomarkers is a predictor for metastasis and poor patient survival in CRC. MACC1 is a tumor-initiating and metastasis-promoting oncogene, whereas S100A4 has not been shown to initiate tumor formation but can, nevertheless, promote malignant tumor growth and metastasis formation. Cantharidin is a natural drug extracted from various blister beetle species, and its demethylated analogue norcantharidin has been shown in several studies to have an anti-cancer and anti-metastatic effect in different cancer entities such as CRC, breast cancer, and lung cancer. The impact of the natural compound cantharidin and norcantharidin on S100A4 and MACC1 gene expression, cancer cell migration, motility, and colony formation in vitro was tested. Here, for the first time, we have demonstrated that cantharidin and norcantharidin are transcriptional inhibitors of S100A4 and MACC1 mRNA expression, protein expression, and motility in CRC cells. Our results clearly indicate that cantharidin and, to a lesser extent, its analogue norcantharidin are promising compounds for efficient anti-metastatic therapy targeting the metastasis-inducing genes S100A4 and MACC1 for personalized medicine for cancer patients.


Assuntos
Neoplasias Colorretais , Neoplasias , Humanos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Cantaridina/farmacologia , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Neoplasias Colorretais/patologia , Proteína A4 de Ligação a Cálcio da Família S100/genética , Transativadores/genética , Transativadores/metabolismo
2.
Br J Cancer ; 127(4): 675-685, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35597866

RESUMO

BACKGROUND: The metastasis inducing gene MACC1 is a prognostic and predictive biomarker for metastasis in several cancers. Its mechanism of inducing metastasis includes the transcriptional control of other cancer-related target genes. Here, we investigate the interplay with the metastasis driver S100P in CRC progression. METHODS: MACC1-dependent S100P expression was analysed by qRT-PCR. The binding of MACC1 to the S100P promoter was determined by ChIP. Alterations in cell proliferation and motility were determined by functional in vitro assays. In vivo metastasis after intrasplenic transplantation was assessed by bioluminescence imaging and evaluation of tumour growth and liver metastasis. The prognostic value of S100P was determined in CRC patients by ROC-based Kaplan-Meier analyses. RESULTS: Expression of S100P and MACC1 correlated positively in CRC cells and colorectal tumours. MACC1 was found binding to the S100P promoter and induces its expression. The overexpression of S100P increased proliferation, migration and invasion in vitro and significantly induced liver metastasis in vivo. S100P expression was significantly elevated in metachronously metastasising CRC and was associated with shorter metastasis-free survival. CONCLUSIONS: We identified S100P as a transcriptional target gene of MACC1. Expression of S100P increases the metastatic potential of CRC cells in vitro and in vivo, and serves as a prognostic biomarker for metastasis-free survival of CRC patients, emphasising novel therapeutic interventions targeting S100P.


Assuntos
Neoplasias Colorretais , Neoplasias Hepáticas , Proteínas de Ligação ao Cálcio/metabolismo , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias Hepáticas/genética , Proteínas de Neoplasias/genética , Prognóstico , Transativadores/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
3.
Cell Mol Life Sci ; 78(7): 3525-3542, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33469705

RESUMO

Metastasis Associated in Colon Cancer 1 (MACC1) is a novel prognostic, predictive and causal biomarker for tumor progression and metastasis in many cancer types, including colorectal cancer. Besides its clinical value, little is known about its molecular function. Its similarity to SH3BP4, involved in regulating uptake and recycling of transmembrane receptors, suggests a role of MACC1 in endocytosis. By exploring the MACC1 interactome, we identified the clathrin-mediated endocytosis (CME)-associated proteins CLTC, DNM2 and AP-2 as MACC1 binding partners. We unveiled a MACC1-dependent routing of internalized transferrin receptor towards recycling. Elevated MACC1 expression caused also the activation and internalization of EGFR, a higher rate of receptor recycling, as well as earlier and stronger receptor activation and downstream signaling. These effects are limited by deletion of CME-related protein interaction sites in MACC1. Thus, MACC1 regulates CME and receptor recycling, causing increased growth factor-mediated downstream signaling and cell proliferation. This novel mechanism unveils potential therapeutic intervention points restricting MACC1-driven metastasis.


Assuntos
Clatrina/metabolismo , Neoplasias Colorretais/patologia , Endocitose , Regulação Neoplásica da Expressão Gênica , Receptores da Transferrina/metabolismo , Transativadores/metabolismo , Animais , Apoptose , Biomarcadores Tumorais/metabolismo , Proliferação de Células , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Receptores ErbB/genética , Receptores ErbB/metabolismo , Humanos , Camundongos , Proteoma/análise , Proteoma/metabolismo , Receptores da Transferrina/genética , Transativadores/genética , Células Tumorais Cultivadas , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Semin Cancer Biol ; 60: 365-379, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31430556

RESUMO

Metastasis remains the key issue impacting cancer patient survival and failure or success of cancer therapies. Metastatic spread is a complex process including dissemination of single cells or collective cell migration, penetration of the blood or lymphatic vessels and seeding at a distant organ site. Hundreds of genes involved in metastasis have been identified in studies across numerous cancer types. Here, we analyzed how the metastasis-associated gene MACC1 cooperates with other genes in metastatic spread and how these coactions could be exploited by combination therapies: We performed (i) a MACC1 correlation analysis across 33 cancer types in the mRNA expression data of TCGA and (ii) a comprehensive literature search on reported MACC1 combinations and regulation mechanisms. The key genes MET, HGF and MMP7 reported together with MACC1 showed significant positive correlations with MACC1 in more than half of the cancer types included in the big data analysis. However, ten other genes also reported together with MACC1 in the literature showed significant positive correlations with MACC1 in only a minority of 5 to 15 cancer types. To uncover transcriptional regulation mechanisms that are activated simultaneously with MACC1, we isolated pan-cancer consensus lists of 1306 positively and 590 negatively MACC1-correlating genes from the TCGA data and analyzed each of these lists for sharing transcription factor binding motifs in the promotor region. In these lists, binding sites for the transcription factors TELF1, ETS2, ETV4, TEAD1, FOXO4, NFE2L1, ELK1, SP1 and NFE2L2 were significantly enriched, but none of them except SP1 was reported in combination with MACC1 in the literature. Thus, while some of the results of the big data analysis were in line with the reported experimental results, hypotheses on new genes involved in MACC1-driven metastasis formation could be generated and warrant experimental validation. Furthermore, the results of the big data analysis can help to prioritize cancer types for experimental studies and testing of combination therapies.


Assuntos
Biomarcadores Tumorais , Regulação Neoplásica da Expressão Gênica , Neoplasias/genética , Neoplasias/metabolismo , Transativadores/genética , Transativadores/metabolismo , Animais , Big Data , Biologia Computacional/métodos , Mineração de Dados , Progressão da Doença , Suscetibilidade a Doenças , Redes Reguladoras de Genes , Humanos , Metástase Neoplásica , Estadiamento de Neoplasias , Neoplasias/patologia , Transdução de Sinais
5.
PLoS Biol ; 15(6): e2000784, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28570591

RESUMO

MACC1 (Metastasis Associated in Colon Cancer 1) is a key driver and prognostic biomarker for cancer progression and metastasis in a large variety of solid tumor types, particularly colorectal cancer (CRC). However, no MACC1 inhibitors have been identified yet. Therefore, we aimed to target MACC1 expression using a luciferase reporter-based high-throughput screening with the ChemBioNet library of more than 30,000 compounds. The small molecules lovastatin and rottlerin emerged as the most potent MACC1 transcriptional inhibitors. They remarkably inhibited MACC1 promoter activity and expression, resulting in reduced cell motility. Lovastatin impaired the binding of the transcription factors c-Jun and Sp1 to the MACC1 promoter, thereby inhibiting MACC1 transcription. Most importantly, in CRC-xenografted mice, lovastatin and rottlerin restricted MACC1 expression and liver metastasis. This is-to the best of our knowledge-the first identification of inhibitors restricting cancer progression and metastasis via the novel target MACC1. This drug repositioning might be of therapeutic value for CRC patients.


Assuntos
Acetofenonas/uso terapêutico , Antineoplásicos/uso terapêutico , Benzopiranos/uso terapêutico , Neoplasias Colorretais/tratamento farmacológico , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Fatores de Transcrição/antagonistas & inibidores , Desacopladores/uso terapêutico , Acetofenonas/efeitos adversos , Acetofenonas/química , Acetofenonas/farmacologia , Animais , Antineoplásicos/efeitos adversos , Antineoplásicos/química , Antineoplásicos/farmacologia , Benzopiranos/efeitos adversos , Benzopiranos/química , Benzopiranos/farmacologia , Sítios de Ligação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/patologia , Feminino , Genes Reporter/efeitos dos fármacos , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/química , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Neoplasias Hepáticas Experimentais/prevenção & controle , Neoplasias Hepáticas Experimentais/secundário , Camundongos SCID , Simulação de Acoplamento Molecular , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Regiões Promotoras Genéticas/efeitos dos fármacos , Distribuição Aleatória , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Bibliotecas de Moléculas Pequenas , Transativadores , Fatores de Transcrição/química , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Carga Tumoral/efeitos dos fármacos , Desacopladores/efeitos adversos , Desacopladores/química , Desacopladores/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
6.
Anticancer Drugs ; 31(7): 672-683, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32282370

RESUMO

The anticancer drug candidates 1,3-dibenzyl-4,5-diphenyl-imidazol-2-ylidene gold(I) dimethylamino dithiocarbamate and 2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl-1-thiolate derivative exhibited nanomolar in-vitro activity against prostate cancer cells advanced prostate cancer (PC3) and micromolar inhibition of mammalian thioredoxin reductase. Encouraging maximum tolerable dose experiments led to human prostate cancer subcutaneous xenograft experiments; 1,3-dibenzyl-4,5-diphenyl-imidazol-2-ylidene gold(I) dimethylamino dithiocarbamate and 2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl-1-thiolate derivative were applied twelve times at two doses in groups of n = 5 PC3 to tumor-bearing NMRI:nu/nu mice. 1,3-dibenzyl-4,5-diphenyl-imidazol-2-ylidene gold(I) dimethylamino dithiocarbamate and 2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl-1-thiolate derivative at the dose of 10 and 20 mg/kg showed good tolerability, while no significant body weight loss was seen in both groups. In particular, for the drug 1,3-dibenzyl-4,5-diphenyl-imidazol-2-ylidene gold(I) dimethylamino dithiocarbamate the tumor growth inhibition suggested to be dose dependent, reflected by the respective optimal T/C values of 0.45 at the dose of 10 mg/kg and of 0.31 at the dose of 20 mg/kg. By contrast, the 2,3,4,6-tetra-O-acetyl-α-D-glucopyranosyl-1-thiolate derivative treated groups showed no indication for dose-dependent antitumoral activity, as reflected by the optimal T/C values of 0.44 for the 10 mg/kg and for the 20 mg/kg treated mice. Immunohistochemical experiments involving Ki67 staining of tumor tissue showed that both compounds reduced PC3 cell proliferation against the difficult to treat advanced human prostate tumors derived from PC3.


Assuntos
Ouro/farmacologia , Compostos Organometálicos/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Tiocarbamatos/farmacologia , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Processos de Crescimento Celular/efeitos dos fármacos , Cristalografia por Raios X , Ensaios de Seleção de Medicamentos Antitumorais , Transportador de Glucose Tipo 1/química , Transportador de Glucose Tipo 1/metabolismo , Ouro/química , Humanos , Masculino , Camundongos , Camundongos Nus , Simulação de Acoplamento Molecular , Compostos Organometálicos/síntese química , Compostos Organometálicos/química , Células PC-3 , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Distribuição Aleatória , Compostos de Sulfidrila/síntese química , Compostos de Sulfidrila/química , Compostos de Sulfidrila/farmacologia , Tiocarbamatos/síntese química , Tiocarbamatos/química , Tiorredoxina Dissulfeto Redutase/antagonistas & inibidores , Tiorredoxina Dissulfeto Redutase/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Cancer Metastasis Rev ; 37(4): 805-820, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30607625

RESUMO

Deciphering the paths to metastasis and identifying key molecules driving this process is one important issue for understanding and treatment of cancer. Such a key driver molecule is Metastasis Associated in Colon Cancer 1 (MACC1). A decade long research on this evolutionarily conserved molecule with features of a transcription factor as well as an adapter protein for versatile protein-protein interactions has shown that it has manifold properties driving tumors to their metastatic stage. MACC1 transcriptionally regulates genes involved in epithelial-mesenchymal transition (EMT), including those which are able to directly induce metastasis like c-MET, impacts tumor cell migration and invasion, and induces metastasis in solid cancers. MACC1 has proven as a valuable biomarker for prognosis of metastasis formation linked to patient survival and gives promise to also act as a predictive marker for individualized therapies in a broad variety of cancers. This review discusses the many features of MACC1 in the context of the hallmarks of cancer and the potential of this molecule as biomarker and novel therapeutic target for restriction and prevention of metastasis.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas de Neoplasias/genética , Neoplasias/genética , Fatores de Transcrição/genética , Animais , Biomarcadores Tumorais/genética , Humanos , Metástase Neoplásica , Neoplasias/patologia , Transativadores
8.
Mol Ther ; 26(4): 1137-1153, 2018 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-29503198

RESUMO

The Sleeping Beauty (SB) transposon system is a non-viral gene delivery platform that combines simplicity, inexpensive manufacture, and favorable safety features in the context of human applications. However, efficient correction of hematopoietic stem and progenitor cells (HSPCs) with non-viral vector systems, including SB, demands further refinement of gene delivery techniques. We set out to improve SB gene transfer into hard-to-transfect human CD34+ cells by vectorizing the SB system components in the form of minicircles that are devoid of plasmid backbone sequences and are, therefore, significantly reduced in size. As compared to conventional plasmids, delivery of the SB transposon system as minicircle DNA is ∼20 times more efficient, and it is associated with up to a 50% reduction in cellular toxicity in human CD34+ cells. Moreover, providing the SB transposase in the form of synthetic mRNA enabled us to further increase the efficacy and biosafety of stable gene delivery into hematopoietic progenitors ex vivo. Genome-wide insertion site profiling revealed a close-to-random distribution of SB transposon integrants, which is characteristically different from gammaretroviral and lentiviral integrations in HSPCs. Transplantation of gene-marked CD34+ cells in immunodeficient mice resulted in long-term engraftment and hematopoietic reconstitution, which was most efficient when the SB transposase was supplied as mRNA and nucleofected cells were maintained for 4-8 days in culture before transplantation. Collectively, implementation of minicircle and mRNA technologies allowed us to further refine the SB transposon system in the context of HSPC gene delivery to ultimately meet clinical demands of an efficient and safe non-viral gene therapy protocol.


Assuntos
Elementos de DNA Transponíveis , Técnicas de Transferência de Genes , Vetores Genéticos/genética , Células-Tronco Hematopoéticas/metabolismo , Animais , Sobrevivência Celular , Citometria de Fluxo , Expressão Gênica , Humanos , Camundongos , Camundongos Knockout , Retroviridae/genética , Transfecção , Transgenes
9.
BMC Cancer ; 18(1): 297, 2018 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-29544454

RESUMO

BACKGROUND: Colorectal cancer (CRC) is the second most common cause of all cancer deaths in Europe and the Western world with a lifetime risk of approximately 5%. Despite several improvements in the treatment of patients with unresectable CRC prognosis is poor and there is the need of developing new treatment strategies for patients with metastatic chemorefractory disease. The S100 calcium binding protein A4 (S100A4) predicts metastasis formation and reduced CRC patient survival. S100A4 was previously identified as transcriptional target of the Wnt/ß-catenin signaling pathway. The Food and Drug Administration (FDA)-approved anti-helminthic drug niclosamide is known to intervene in the Wnt/ß-catenin pathway signaling, leading to reduced expression of S100A4 linked to restricted in vivo metastasis formation. Thus, we aim at translation of our findings on restricting S100A4-driven metastasis into clinical practice for treating metastasized CRC patients progressing after standard therapy. METHODS/DESIGN: NIKOLO is a phase II, single center, one-arm open-label clinical trial to investigate the safety and efficacy of niclosamide tablets in patients with metastasized CRC progressing under standard therapy. Eligible patients will receive 2 g of orally applied niclosamide once a day and will continue with the treatment once daily till disease progression or toxicity. Toxicities will be graded according to National Cancer Institute Common Terminology Criteria for Adverse Events (NCI CTCAE) v4.03. The primary objective of this trial is to assess the progression free survival after 4 months, secondary objectives are overall survival, time to progression, disease control rate (remission + partial remission + stable disease), and safety. Furthermore, pharmacokinetic analysis will be conducted to evaluate niclosamide plasma concentration. DISCUSSION: This study is expected to provide evidence of the feasibility, toxicity and efficacy of niclosamide in the treatment of patients with metastasized CRC and could help to establish a new treatment option. TRIAL REGISTRATION: The study is registered with ClinicalTrials.gov (NCT02519582) and the European Clinical Trials Database (EudraCT 2014-005151-20).


Assuntos
Neoplasias Colorretais/tratamento farmacológico , Neoplasias Primárias Múltiplas/tratamento farmacológico , Segunda Neoplasia Primária/tratamento farmacológico , Niclosamida/administração & dosagem , Administração Oral , Adulto , Idoso , Neoplasias Colorretais/genética , Neoplasias Colorretais/patologia , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Pessoa de Meia-Idade , Neoplasias Primárias Múltiplas/patologia , Neoplasias Primárias Múltiplas/secundário , Segunda Neoplasia Primária/patologia , Segunda Neoplasia Primária/secundário , Niclosamida/efeitos adversos , Proteína A4 de Ligação a Cálcio da Família S100/genética , Resultado do Tratamento
10.
Neuroendocrinology ; 107(1): 1-23, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28910819

RESUMO

BACKGROUND/AIMS: The tumor suppressor p53 is rarely mutated in gastroenteropancreatic neuroendocrine neoplasms (GEP-NEN) but they frequently show a strong expression of negative regulators of p53, rendering these tumors excellent targets for a p53 recovery therapy. Therefore, we analyzed the mechanisms of a p53 recovery therapy on intestinal neuroendocrine tumors in vitro and in vivo. METHODS: By Western blot and immunohistochemistry, we found that in GEP-NEN biopsy material overexpression of MDM2 was present in intestinal NEN. Therefore, we analyzed the effect of a small-molecule inhibitor, nutlin-3a, in p53 wild-type and mutant GEP-NEN cell lines by proliferation assay, flow cytometry, immunofluorescence, Western blot, and by multiplex gene expression analysis. Finally, we analyzed the antitumor effect of nutlin-3a in a xenograft mouse model in vivo. During the study, the tumor volume was determined. RESULTS: The midgut wild-type cell line KRJ-I responded to the treatment with cell cycle arrest and apoptosis. By gene expression analysis, we could demonstrate that nutlins reactivated an antiproliferative p53 response. KRJ-I-derived xenograft tumors showed a significantly decreased tumor growth upon treatment with nutlin-3a in vivo. Furthermore, our data suggest that MDM2 also influences the expression of the oncogene FOXM1 in a p53-independent manner. Subsequently, a combined treatment of nutlin-3a and cisplatin (as chemoresistance model) resulted in synergistically enhanced antiproliferative effects. CONCLUSION: In summary, MDM2 overexpression is a frequent event in p53 wild-type intestinal neuroendocrine neoplasms and therefore recovery of a p53 response might be a novel personalized treatment approach in these tumors.


Assuntos
Antineoplásicos/farmacologia , Imidazóis/farmacologia , Neoplasias Intestinais/patologia , Tumores Neuroendócrinos/patologia , Piperazinas/farmacologia , Adulto , Idoso , Animais , Proteína Forkhead Box M1/antagonistas & inibidores , Humanos , Camundongos , Pessoa de Meia-Idade , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Proteína Supressora de Tumor p53/antagonistas & inibidores , Ensaios Antitumorais Modelo de Xenoenxerto
11.
J Infect Dis ; 217(1): 147-157, 2017 12 27.
Artigo em Inglês | MEDLINE | ID: mdl-28968861

RESUMO

Clostridium perfringens enterotoxin (CPE) causes food poisoning and antibiotic-associated diarrhea. It uses some claudin tight junction proteins (eg, claudin-4) as receptors to form Ca2+-permeable pores in the membrane, damaging epithelial cells in small intestine and colon. We demonstrate that only a subpopulation of colonic enterocytes which are characterized by apical dislocation of claudins are CPE-susceptible. CPE-mediated damage was enhanced if paracellular barrier was impaired by Ca2+ depletion, proinflammatory cytokine tumor necrosis factor α, or dedifferentiation. Microscopy, Ca2+ monitoring, and electrophysiological data showed that CPE-mediated cytotoxicity and barrier disruption was limited by extent of CPE-binding. The latter was restricted by accessibility of non-junctional claudin molecules such as claudin-4 at apical membranes. Focal-leaks detected in HT-29/B6 colonic monolayers were verified for native tissue using colon biopsies. These mechanistic findings indicate how CPE-mediated effects may turn from self-limiting diarrhea into severe clinical manifestation such as colonic necrosis-if intestinal barrier dysfunction, eg, during inflammation facilitates claudin accessibility.


Assuntos
Claudinas/antagonistas & inibidores , Infecções por Clostridium/patologia , Clostridium perfringens/patogenicidade , Colo/patologia , Enterotoxinas/toxicidade , Doenças Transmitidas por Alimentos/patologia , Junções Íntimas/patologia , Linhagem Celular , Enterócitos/patologia , Humanos , Mucosa Intestinal/patologia , Permeabilidade
12.
BMC Cancer ; 17(1): 129, 2017 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-28193196

RESUMO

BACKGROUND: Bacterial toxins have evolved to an effective therapeutic option for cancer therapy. The Clostridium perfringens enterotoxin (CPE) is a pore-forming toxin with selective cytotoxicity. The transmembrane tight junction proteins claudin-3 and -4 are known high affinity CPE receptors. Their expression is highly upregulated in human cancers, including breast, ovarian and colon carcinoma. CPE binding to claudins triggers membrane pore complex formation, which leads to rapid cell death. Previous studies demonstrated the anti-tumoral effect of treatment with recombinant CPE-protein. Our approach aimed at evaluation of a selective and targeted cancer gene therapy of claudin-3- and/or claudin-4- expressing colon carcinoma in vitro and in vivo by using translation optimized CPE expressing vector. METHODS: In this study the recombinant CPE and a translation optimized CPE expressing vector (optCPE) was used for targeted gene therapy of claudin-3 and/or -4 overexpressing colon cancer cell lines. All experiments were performed in the human SW480, SW620, HCT116, CaCo-2 and HT-29 colon cancer and the isogenic Sk-Mel5 and Sk-Mel5 Cldn-3-YFP melanoma cell lines. Claudin expression analysis was done at protein and mRNA level, which was confirmed by immunohistochemistry. The CPE induced cytotoxicity was analyzed by the MTT cytotoxicity assay. In addition patient derived colon carcinoma xenografts (PDX) were characterized and used for the intratumoral in vivo gene transfer of the optCPE expressing vector in PDX bearing nude mice. RESULTS: Claudin-3 and -4 overexpressing colon carcinoma lines showed high sensitivity towards both recCPE application and optCPE gene transfer. The positive correlation between CPE cytotoxicity and level of claudin expression was demonstrated. Transfection of optCPE led to targeted, rapid cytotoxic effects such as membrane disruption and necrosis in claudin overexpressing cells. The intratumoral optCPE in vivo gene transfer led to tumor growth inhibition in colon carcinoma PDX bearing mice in association with massive necrosis due to the intratumoral optCPE expression. CONCLUSIONS: This novel approach demonstrates that optCPE gene transfer represents a promising and efficient therapeutic option for a targeted suicide gene therapy of claudin-3 and/or claudin-4 overexpressing colon carcinomas, leading to rapid and effective tumor cell killing in vitro and in vivo.


Assuntos
Claudina-3/genética , Claudina-4/genética , Neoplasias do Colo/terapia , Enterotoxinas/uso terapêutico , Genes Transgênicos Suicidas , Terapia Genética , Animais , Efeito Espectador , Clostridium perfringens , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Feminino , Humanos , Camundongos , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto
13.
Drug Resist Updat ; 26: 10-27, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27180307

RESUMO

The increasing unraveling of the molecular basis of cancer offers manifold novel options for intervention strategies. However, the discovery and development of new drugs for potential clinical applications is a tremendously time-consuming and costly process. Translating a novel lead candidate compound into an approved clinical drug takes often more than a decade, and the success rate is very low due to versatile efforts including defining its pharmacokinetics, pharmacodynamics, side effects as well as lack of sufficient efficacy. Thus, strategies are needed to minimize time and costs, while maximizing success rates. A very attractive strategy for novel cancer therapeutic options is the repositioning of already approved drugs. These medicines, approved for the treatment of non-malignant disorders, have already passed some early costs and time, have been tested in humans and are ready for clinical trials as anti-cancer drugs. Here we discuss the repositioning of nonsteroidal anti-inflammatory drugs (NSAID), statins, anti-psychotic drugs, anti-helminthic drugs and vitamin D as anti-tumor agents. We focus on their novel actions and potential for inhibition of cancer growth and metastasis by interfering with target molecules and pathways, which drive these malignant processes. Furthermore, important pre-clinical and clinical data are reviewed herein, which elucidate their therapeutic mechanisms which enable their repositioning for cancer therapy and disruption of metastasis.


Assuntos
Antineoplásicos/farmacologia , Reposicionamento de Medicamentos , Neoplasias/tratamento farmacológico , Animais , Progressão da Doença , Humanos , Terapia de Alvo Molecular , Metástase Neoplásica , Neoplasias/patologia
15.
Recent Results Cancer Res ; 209: 95-110, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28101690

RESUMO

For suicide gene therapy, initially prodrug-converting enzymes (gene-directed enzyme-producing therapy, GDEPT) were employed to intracellularly metabolize non-toxic prodrugs into toxic compounds, leading to the effective suicidal killing of the transfected tumor cells. In this regard, the suicide gene therapy has demonstrated its potential for efficient tumor eradication. Numerous suicide genes of viral or bacterial origin were isolated, characterized, and extensively tested in vitro and in vivo, demonstrating their therapeutic potential even in clinical trials to treat cancers of different entities. Apart from this, growing efforts are made to generate more targeted and more effective suicide gene systems for cancer gene therapy. In this regard, bacterial toxins are an alternative to the classical GDEPT strategy, which add to the broad spectrum of different suicide approaches. In this context, lytic bacterial toxins, such as streptolysin O (SLO) or the claudin-targeted Clostridium perfringens enterotoxin (CPE) represent attractive new types of suicide oncoleaking genes. They permit as pore-forming proteins rapid and also selective toxicity toward a broad range of cancers. In this chapter, we describe the generation and use of SLO as well as of CPE-based gene therapies for the effective tumor cell eradication as promising, novel suicide gene approach particularly for treatment of therapy refractory tumors.


Assuntos
Toxinas Bacterianas/genética , Genes Transgênicos Suicidas , Terapia Genética/métodos , Neoplasias/terapia , Animais , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/genética , Toxinas Bacterianas/biossíntese , Morte Celular , Toxina Diftérica/biossíntese , Toxina Diftérica/genética , Enterotoxinas/biossíntese , Enterotoxinas/genética , Regulação da Expressão Gênica , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Estreptolisinas/biossíntese , Estreptolisinas/genética
16.
Cancers (Basel) ; 16(7)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38611008

RESUMO

Metastasis remains the most critical factor limiting patient survival and the most challenging part of cancer-targeted therapy. Identifying the causal drivers of metastasis and characterizing their properties in various key aspects of cancer biology is essential for the development of novel metastasis-targeting approaches. Metastasis-associated in colon cancer 1 (MACC1) is a prognostic and predictive biomarker that is now recognized in more than 20 cancer entities. Although MACC1 can already be linked with many hallmarks of cancer, one key process-the facilitation of immune evasion-remains poorly understood. In this review, we explore the direct and indirect links between MACC1 and the mechanisms of immune escape. Therein, we highlight the signaling pathways and secreted factors influenced by MACC1 as well as their effects on the infiltration and anti-tumor function of immune cells.

17.
Cancers (Basel) ; 16(3)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38339354

RESUMO

Colorectal cancer (CRC) is one of the leading causes of cancer-related deaths worldwide. The high mortality is directly associated with metastatic disease, which is thought to be initiated by colon cancer stem cells, according to the cancer stem cell (CSC) model. Consequently, early identification of those patients who are at high risk for metastasis is crucial for improved treatment and patient outcomes. Metastasis-associated in colon cancer 1 (MACC1) is a novel prognostic biomarker for tumor progression and metastasis formation independent of tumor stage. We previously showed an involvement of MACC1 in cancer stemness in the mouse intestine of our MACC1 transgenic mouse models. However, the expression of MACC1 in human CSCs and possible implications remain elusive. Here, we explored the molecular mechanisms by which MACC1 regulates stemness and the CSC-associated invasive phenotype based on patient-derived tumor organoids (PDOs), patient-derived xenografts (PDXs) and human CRC cell lines. We showed that CD44-enriched CSCs from PDO models express significantly higher levels of MACC1 and LGR5 and display higher tumorigenicity in immunocompromised mice. Similarly, RNA sequencing performed on PDO and PDX models demonstrated significantly increased MACC1 expression in ALDH1(+) CSCs, highlighting its involvement in cancer stemness. We further showed the correlation of MACC1 with the CSC markers CD44, NANOG and LGR5 in PDO models as well as established cell lines. Additionally, MACC1 increased stem cell gene expression, clonogenicity and sphere formation. Strikingly, we showed that MACC1 binds as a transcription factor to the LGR5 gene promoter, uncovering the long-known CSC marker LGR5 as a novel essential signaling mediator employed by MACC1 to induce CSC-like properties in human CRC patients. Our in vitro findings were further substantiated by a significant positive correlation of MACC1 with LGR5 in CRC cell lines as well as CRC patient tumors. Taken together, this study indicates that the metastasis inducer MACC1 acts as a cancer stem cell-associated marker. Interventional approaches targeting MACC1 would potentially improve further targeted therapies for colorectal cancer patients to eradicate CSCs and prevent cancer recurrence and distant metastasis formation.

18.
Sci Signal ; 17(824): eadc9662, 2024 02 20.
Artigo em Inglês | MEDLINE | ID: mdl-38377177

RESUMO

The IL-6-gp130-STAT3 signaling axis is a major regulator of inflammation. Activating mutations in the gene encoding gp130 and germline gain-of-function mutations in STAT3 (STAT3GOF) are associated with multi-organ autoimmunity, severe morbidity, and adverse prognosis. To dissect crucial cellular subsets and disease biology involved in activated gp130 signaling, the gp130-JAK-STAT3 axis was constitutively activated using a transgene, L-gp130, specifically targeted to T cells. Activating gp130 signaling in T cells in vivo resulted in fatal, early onset, multi-organ autoimmunity in mice that resembled human STAT3GOF disease. Female mice had more rapid disease progression than male mice. On a cellular level, gp130 signaling induced the activation and effector cell differentiation of T cells, promoted the expansion of T helper type 17 (TH17) cells, and impaired the activity of regulatory T cells. Transcriptomic profiling of CD4+ and CD8+ T cells from these mice revealed commonly dysregulated genes and a gene signature that, when applied to human transcriptomic data, improved the segregation of patients with transcriptionally diverse STAT3GOF mutations from healthy controls. The findings demonstrate that increased gp130-STAT3 signaling leads to TH17-driven autoimmunity that phenotypically resembles human STAT3GOF disease.


Assuntos
Autoimunidade , Linfócitos T CD8-Positivos , Humanos , Masculino , Feminino , Camundongos , Animais , Receptor gp130 de Citocina/genética , Receptor gp130 de Citocina/metabolismo , Autoimunidade/genética , Linfócitos T CD8-Positivos/metabolismo , Transdução de Sinais , Inflamação , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo
19.
Curr Opin Oncol ; 25(6): 659-64, 2013 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24100345

RESUMO

PURPOSE OF REVIEW: In recent years, remarkable progress has been made in the development of cancer gene therapy into an applicable treatment modality for immunogene, suicide, gene correction and oncolytic therapies. New exciting developments for gene suppression or miRNA therapies are under way. The efforts are focused on more efficient and specific attack at known and novel targets, improvement of vector delivery and therapeutic efficacy. In this review, promising and new gene therapy approaches and clinical studies are briefly discussed to highlight important future directions of preclinical and clinical efforts. RECENT FINDINGS: Apart from progress for vector development and even more important, improvements for suicide, T-cell-based, oncolytic virus therapies were achieved. In addition, new emerging therapies are successfully developed, which are particularly promising for siRNA-based technologies applied to gene suppression therapy. Novel approaches, such as transcription factor ODN-based decoy, complement the spectrum of current cancer gene therapy. SUMMARY: In summary, cancer gene therapy has made remarkable progress in the improvement/refinement of existing strategies and delivery systems. The field is moving toward a therapeutic option, which will also be applicable for the treatment of disseminated metastases. Furthermore, numerous new approaches are about to be translated in clinical trials.


Assuntos
Desenho de Fármacos , Terapia Genética , MicroRNAs/uso terapêutico , Neoplasias/terapia , Terapia Viral Oncolítica , Fatores de Transcrição/uso terapêutico , Vacinas de DNA , Apoptose , Feminino , Regulação Neoplásica da Expressão Gênica , Genes Reporter/genética , Genes Reporter/imunologia , Genes Transgênicos Suicidas/genética , Genes Transgênicos Suicidas/imunologia , Terapia Genética/tendências , Humanos , Masculino , Neoplasias/genética , Neoplasias/imunologia , Terapia Viral Oncolítica/tendências , Fatores de Transcrição/imunologia
20.
PLoS Genet ; 6(12): e1001231, 2010 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-21170361

RESUMO

Transcriptional signatures are an indispensible source of correlative information on disease-related molecular alterations on a genome-wide level. Numerous candidate genes involved in disease and in factors of predictive, as well as of prognostic, value have been deduced from such molecular portraits, e.g. in cancer. However, mechanistic insights into the regulatory principles governing global transcriptional changes are lagging behind extensive compilations of deregulated genes. To identify regulators of transcriptome alterations, we used an integrated approach combining transcriptional profiling of colorectal cancer cell lines treated with inhibitors targeting the receptor tyrosine kinase (RTK)/RAS/mitogen-activated protein kinase pathway, computational prediction of regulatory elements in promoters of co-regulated genes, chromatin-based and functional cellular assays. We identified commonly co-regulated, proliferation-associated target genes that respond to the MAPK pathway. We recognized E2F and NFY transcription factor binding sites as prevalent motifs in those pathway-responsive genes and confirmed the predicted regulatory role of Y-box binding protein 1 (YBX1) by reporter gene, gel shift, and chromatin immunoprecipitation assays. We also validated the MAPK-dependent gene signature in colorectal cancers and provided evidence for the association of YBX1 with poor prognosis in colorectal cancer patients. This suggests that MEK/ERK-dependent, YBX1-regulated target genes are involved in executing malignant properties.


Assuntos
Neoplasias Colorretais/metabolismo , Regulação Neoplásica da Expressão Gênica , Genes Reguladores , Sistema de Sinalização das MAP Quinases , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteína 1 de Ligação a Y-Box/metabolismo , Linhagem Celular Tumoral , Neoplasias Colorretais/enzimologia , Neoplasias Colorretais/genética , Perfilação da Expressão Gênica , Humanos , Quinases de Proteína Quinase Ativadas por Mitógeno/genética , Proteína 1 de Ligação a Y-Box/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA